
The Best of Abstract Interpretations
ROBERTO GIACOBAZZI, University of Arizona, USA

FRANCESCO RANZATO, University of Padova, Italy

We study “the best of abstract interpretations”, that is, the best possible abstract interpretations of programs.

Abstract interpretations are inductively defined by composing abstract transfer functions for the basic com-

mands, such as assignments and Boolean guards. However, abstract interpretation is not compositional: even if

the abstract transfer functions of the basic commands are the best possible ones on a given abstract domain 𝐴

this does not imply that the whole inductive abstract interpretation of a program p is still the best in 𝐴.

When this happens we are in the optimal scenario where the abstract interpretation of p coincides with the

abstraction of the concrete interpretation of p. Our main contributions are threefold. Firstly, we investigate the

computability properties of the class of programs having the best possible abstract interpretation on a fixed

abstract domain 𝐴. We show that this class is, in general, not straightforward and not recursive. Secondly, we

prove the impossibility of achieving the best possible abstract interpretation of any program p either by an

effective compilation of p or by minimally refining or simplifying the abstract domain 𝐴. These results show

that the program property of having the best possible abstract interpretation is not trivial and, in general,

hard to achieve. We then show how to prove that the abstract interpretation of a program is indeed the best

possible one. To this aim, we put forward a program logic parameterized on an abstract domain𝐴 which infers

triples [pre]𝐴 p [post]𝐴. These triples encode that the inductive abstract interpretation of p on 𝐴 with abstract

input pre ∈ 𝐴 gives post ∈ 𝐴 as abstract output and this is the best possible in 𝐴.
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post-conditions; Program analysis; Abstraction.
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1 Introduction
Cousot and Cousot [1979] defined already in their seminal POPL1979 paper the notion of best
correct approximation (bca, originally called “best correct upper approximation” and denoted 𝜏

in [Cousot and Cousot 1979, Theorem 7.2.0.3]) of a generic predicate transformer to provide a

necessary and sufficient condition for the soundness of an abstract interpretation: any abstract

interpretation is sound if and only if it over-approximates the bca [Cousot and Cousot 1979, Theorem

7.2.0.3]. As the terminology hints, the bca of a predicate transformer 𝑓 represents the best possible

function that soundly approximates 𝑓 in a given abstract domain 𝐴. Given a predicate transformer

𝑓 : 𝐶 → 𝐶 defined in a domain 𝐶 of concrete program properties (e.g., sets of program stores

for imperative programs), and an abstract domain 𝐴 as specified in the Galois connection-based
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Fig. 1. The Abstract Domain Sign.

abstract interpretation framework, i.e., by abstraction and concretization maps, resp. 𝛼 : 𝐶 → 𝐴 and

𝛾 : 𝐴 → 𝐶 , the bca of 𝑓 is defined as 𝑓 𝐴 ≜ 𝛼 ◦ 𝑓 ◦𝛾 : 𝐴 → 𝐴. Among all sound approximations of 𝑓 ,

𝑓 𝐴 is the most precise one—that is, the best—w.r.t. the usual pointwise ordering between functions.

There are several advantages of being bca with respect to other, possibly non-bca, sound abstract

interpretations: (1) bcas are the most precise over-approximations in 𝐴, hence, they provide the

least number of false alarms and yield an absolute upper bound to the precision that 𝐴 can achieve;

(2) bcas are systematically induced by the concrete inductive program semantics J·K—i.e., the
predicate transformer semantics—and by the abstract domain𝐴; (3) bcas induce extensional program
equivalences ∼𝐴, that is, p ∼𝐴 q ⇔ 𝛼 ◦ JpK ◦𝛾 = 𝛼 ◦ JqK ◦𝛾 is an extensional program relation à la
Rice [1953], and JpK = JqK ⇒ p ∼𝐴 q holds, meaning that the output of best abstract interpretations

is not affected by how the code under analysis is written.

1.1 The Problem
It turns out that the property of being bca is not compositional, meaning that even if the abstract

interpretation of a program p is defined by leveraging abstract predicate transformers for the basic

commands of p, e.g., assignments and Boolean guards, which are bcas, it may well happen that this

abstract interpretation of p is not the best. For instance, the functional composition of two bcas, in

general, is not the bca of the composition, namely, by composing bcas, we may lose precision. As a

simple example, consider the following two programs defined on integer variables

p1 (𝑥) ≜ if 𝑒𝑣𝑒𝑛(𝑥) then 𝑥 else 𝑥 + 1 and p2 (𝑥) ≜ if 𝑒𝑣𝑒𝑛(𝑥) then 0 else 1

and their sequential composition p1; p2 such that Jp1; p2K = 𝜆𝑋 ∈ ℘(Z).{0}. In the case of the

well-known interval analysis Int [Cousot and Cousot 1977], we have that:

pInt
1
[0, 1] = [0, 0] ⊔Int ( [1, 1] + 1) = [0, 0] ⊔Int [2, 2] = [0, 2] , pInt

2
[0, 2] = [0, 0] ⊔Int [1, 1] = [0, 1] ,

(p1; p2)Int [0, 1] = [0, 0] ⊊ [0, 1] = pInt
2

pInt
1
[0, 1] ,

showing that the bca property is not compositional. Consider q1 (𝑥) ≜ 𝑥 := 𝑥 + 1; 𝑥 := 𝑥 − 1 and

q2 (𝑥) ≜ 𝑥 := 𝑥 + 1, and the sign abstract domain Sign in Figure 1, where the notation of its abstract

values provides their concrete meaning. For the sequential composition q1; q2, we have that:

Jq1K(Z>0) = Z>0 Jq2K(Z≥0) = Z>0 Jq1; q2K(Z>0) = Z>1

qSign
1

(Z>0) = (𝑥 := 𝑥 − 1)Sign (𝑥 := 𝑥 + 1)Sign (Z>0) = Z≥0 ≠ Z>0 = Sign(Jq1K(Z>0))

qSign
2

(Z≥0) = (𝑥 := 𝑥 + 1)Sign (Z≥0) = Z>0 = Sign(Jq2K(Z≥0))

(q1; q2)Sign (Z>0) = qSign
2

qSign
1

(Z>0) = Z>0 = Sign(Jq1; q2K(Z>0)) .

This example shows that (q1; q2)Sign (Z>0) provides Z>0 as output in Sign, which is the best abstrac-

tion in Sign of the concrete output Z>1. However, this best abstraction for the composite program
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q1; q2 does not arise from the composition of the two best abstractions for the subprograms q1 and

q2, because qSign
1

(Z>0) = Z≥0, which is not the best abstraction in Sign of the concrete output Z>0.

Program interpreters, abstract interpreters included, are compositionally designed, namely

inductively designed on the program’s syntax. Thus, the lack of compositionality of the property of

being the best abstract interpreter is the main reason of the dependence between the precision of

the abstract interpretation of programs and the way programs are written, namely of the inherent
intensional nature of abstract interpretation [Bruni et al. 2020]. As a consequence of this fundamental

property of abstract interpretation, the following natural questions arise:

(RQ1) What is the relationship between the intensionality of abstract interpretation and the lack of

compositionality of the best abstract interpreters?

(RQ2) Given a program p and an abstract domain 𝐴, does the minimal refinement/simplification

transform Tp (𝐴) of 𝐴 making the abstract interpretation of p on Tp (𝐴) the best possible one
exist?

(RQ3) Given a program p and an abstract domain 𝐴, can we decide or prove whether the inductive

abstract interpretation of p in 𝐴 is the best possible one?

It is worth remarking that (RQ3) comes as a generalization of [Cousot and Cousot 1979, Example

7.2.0.5], where Cousot and Cousot presented “a challenge to automatic program synthesizers”. In

their simple example, the challenge was to synthesize the interval abstract interpretation for

p(𝑥,𝑦) ≜ if 𝑥 ≤ 𝑦 then ⟨𝑥,𝑦⟩

in such a way that it is the best possible interpretation on Int. The goal of [Cousot and Cousot 1979,
Example 7.2.0.5] was to prove that the following solution

pInt (⟨𝑥 ∈ [𝑎, 𝑏], 𝑦 ∈ [𝑐, 𝑑]⟩) = ⟨𝑥 ∈ [𝑎, 𝑏] ⊓Int [−∞, 𝑑], 𝑦 ∈ [𝑐, 𝑑] ⊓Int [𝑎,+∞]⟩

already given in their first POPL77 paper [Cousot and Cousot 1977, Section 9.2] was correct.

1.2 Contributions
Our first contributions address (RQ1) and (RQ3) by exploring the computability aspects of the class

of programs that achieve the best inductive abstract interpretation over a fixed abstract domain 𝐴,

denoted by BCA(𝐴). The investigation of the recursivity properties of this class of programs is

preliminary to any attempt to provide a decision procedure to check whether a given program

admits the best inductive abstract interpretation on a given abstract domain. We first show that

BCA(𝐴) is not straightforward, which means that for any non-trivial abstract domain 𝐴 there

always exists a program p𝐴 such that the inductive abstract interpretation of p𝐴 in 𝐴 is not bca. We

also show that for any non-trivial abstract domain 𝐴 such that, for all programs p, the inductive
abstract semantics JpK♯

𝐴
is decidable (e.g., in static program analysis), it turns out that fixed an

abstract input 𝑎 ∈ 𝐴, there does not exist any effective program compilation 𝜏 that transforms a

program p into a semantically equivalent program 𝜏 (p) for the concrete input 𝛾 (𝑎), and at the same

time, 𝜏 (p) achieves the bca property on input 𝑎. We then prove that the class of programs BCA(𝐴)
is not recursive, meaning that it is undecidable whether the abstract interpretation of a program is

the best or not, thus answering the decidability question of (RQ3). Finally, we show that the bca

is the only possible sound abstract semantics which induces an extensional program equivalence.

All these contributions have several implications: (1) complete program logics for proving the bca

property cannot exist, hence we need to rely upon approximate (sound) logics; (2) Rice’s theorem

cannot be applied to prove that BCA(𝐴) is nonrecursive; and (3) programs cannot be compiled into

equivalent programs enjoying the bca property; hence, it is not possible to maximize the precision

of an abstract interpreter (i.e., make it bca) solely by transforming the code under analysis.
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To settle (RQ2), we show that given an abstract domain 𝐴 and a program p: (i) the least domain

refinement 𝐴r of 𝐴 such that p satisfies the bca property in 𝐴r, in general, does not exist; (ii) the

greatest domain abstraction 𝐴a of 𝐴 such that p satisfies the bca property in 𝐴a does not exist.

These results demonstrate that, unlike the case of completeness [Giacobazzi et al. 2000], the weaker

property of being the best possible abstract interpretation in a domain 𝐴 is inherently harder to

achieve, as it cannot be achieved through a minimal transformation of 𝐴.

As a consequence of the aforementioned impossibility of deciding whether a program admits a

best inductive abstract interpretation, as well as the inability to obtain such bca property through

code transformation or abstract domain refinement, a natural question arises: How do we know if
the result 𝑏 ∈ 𝐴 of an abstract interpretation of a program p with input 𝑎 ∈ 𝐴 is the bca of p in 𝐴? A
positive answer can tell us whether our analysis of p achieved the best possible result in 𝐴. This is

a question concerning the quality of the analysis of p, and requires a meta-analysis, in the sense

of the A
2
I framework by Cousot et al. [2019]. To achieve this goal, we design a program logic to

prove whether the abstract interpretation of a program is the best possible one in a fixed abstract

domain. Of course, due to the impossibility results mentioned above, any such program logic must

be approximated, i.e. some proofs can be missed. Our program logic is parameterized on an abstract

domain 𝐴 and infers program triples of the form [𝑎]𝐴 p [𝑏]𝐴, where 𝑎, 𝑏 ∈ 𝐴. A triple [𝑎]𝐴 p [𝑏]𝐴 is

valid in our logic if: (i) 𝑏 is the inductive analysis of p in 𝐴 on input 𝑎; (ii) the inductive analysis of

p in 𝐴 on input 𝑎 is the bca of p in 𝐴 with the same input. The most distinctive rules of this bca

logic, denoted by ⊢bca, are the following:

⊢bca [𝑎]𝐴 p1 [𝑐]𝐴 ⊢bca [𝑐]𝐴 p2 [𝑏]𝐴 𝛾 (𝑐) = Jp1K𝛾 (𝑎)
⊢bca [𝑎]𝐴 p1; p2 [𝑏]𝐴

(seq𝛾 )

⊢bca [𝑎]𝐴 p [𝑏]𝐴 𝑏 ≤𝐴 𝑎

⊢bca [𝑎]𝐴 pfix [𝑎]𝐴
(abs-inv)

∃𝑛 ≥ 1. ⊢bca [𝑎]𝐴

𝑛︷   ︸︸   ︷
p; · · · ; p [𝑏]𝐴 ⊢bca [𝑎 ∨𝐴 𝑏]𝐴 pfix [𝑎 ∨𝐴 𝑏]𝐴
⊢bca [𝑎]𝐴 pfix [𝑎 ∨𝐴 𝑏]𝐴

(rec)

⊢bca [𝑎′]𝐴 p [𝑏]𝐴 𝑎′ ≤𝐴 𝑎 JpK♯
𝐴
𝑎 ≤𝐴 𝑏

⊢bca [𝑎]𝐴 p [𝑏]𝐴
(weakenpre)

The rule (seq𝛾 ) provides a sufficient condition for composing bca triples by requiring that the

first program p1 is 𝛾-complete on 𝛾 (𝑎), i.e, Jp1K𝛾 (𝑎) = 𝛾 (𝑐) holds. In Section 7.1 we argue that this

completeness condition cannot be avoided in any inductive logic that aims to infer that sequential

compositions preserve bcas. In the rules (abs-inv) and (rec), the meaning of the command pfix
is

intended to be the strongest abstract invariant of p for a given abstract precondition 𝑎 ∈ 𝐴, that is,

lfp(𝜆𝑥 ∈ 𝐴. 𝑎 ∨𝐴 JpK♯
𝐴
𝑥). The rule (abs-inv) is not trivial since it states that an abstract invariant

𝑎 which is bca, i.e. the triple [𝑎]𝐴 p [𝑏]𝐴 is valid for some 𝑏 ≤𝐴 𝑎, is indeed the strongest abstract

invariant of p and this is the best possible one in 𝐴. On the other hand, while (abs-inv) allows us to
derive triples having the shape [𝑐]𝐴 pfix [𝑐]𝐴 only, the recursive rule (rec) can be used to strengthen

the abstract precondition 𝑐 ∈ 𝐴 to some 𝑎 ≤𝐴 𝑐 such that the triple [𝑎]𝐴 p𝑛 [𝑐]𝐴 is valid for some

𝑛 ≥ 1, where p𝑛 denotes the 𝑛-th composition p; · · · ; p. The intuition is that if the strongest abstract

invariant 𝑐 can be reached from the abstract precondition 𝑎 after 𝑛 iterations of p, by preserving

the bca property throughout these iterations, then for pfix
the precondition 𝑐 can be strengthened

to 𝑎. Finally, the bca logic includes the rule (weakenpre) to weaken the abstract precondition 𝑎′

of a triple [𝑎′]𝐴 p [𝑏]𝐴 to some 𝑎 ≥𝐴 𝑎′. This rule relies on proving that the 𝐴-analysis of p with

abstract input 𝑎 is approximated by 𝑏, namely JpK♯
𝐴
𝑎 ≤𝐴 𝑏. On the other hand, as expected, no

rule for modifying (weakening or strengthening) the abstract postcondition is available, since the

validity of [𝑎]𝐴 p [𝑏]𝐴 entails an equality to 𝑏, so that the abstract postcondition 𝑏 cannot be subject

to weakening or strengthening.
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1.3 Illustrative Example of the Program Logic
As an easy example that illustrates the above proof principles for reasoning on abstract postcon-

ditions which are bcas, we prove that the triple [Z>0]Sign (𝑥 > 0? ; 𝑥 := 𝑥 − 1)fix [Z≥0]Sign is valid,

namely Z≥0 is the strongest abstract invariant in Sign of the while program

p ≜ while 𝑥 > 0 do 𝑥 := 𝑥 − 1

for the abstract precondition Z>0, and Z≥0 is indeed the Sign abstraction of the strongest concrete

invariant of p with precondition 𝛾Sign (Z>0) (which is Z≥0 itself). This can be proved in the logic ⊢bca

as follows. Since for basic commands, we always consider their best correct approximations, we

infer the triples ⊢bca [Z>0]Sign 𝑥 > 0? [Z>0]Sign and ⊢bca [Z>0]Sign 𝑥 := 𝑥 − 1 [Z≥0]Sign. Then, we have

that J𝑥 > 0?K𝛾Sign (Z>0) = 𝛾Sign (Z>0) holds, i.e. the test 𝑥 > 0? is locally 𝛾-complete on Z>0, so

that the composition rule (seq𝛾 ) can be applied to derive ⊢bca [Z>0]Sign 𝑥 > 0? ; 𝑥 := 𝑥 − 1 [Z≥0]Sign.

However, since Z≥0 ≰Sign Z>0, we cannot apply the (abs-inv) rule: indeed, it is worth observing

that [Z>0]Sign (𝑥 > 0? ; 𝑥 := 𝑥 − 1)fix [Z>0]Sign would not be a valid bca triple. We therefore apply

the weakening rule (weakenpre) because its premise J𝑥 > 0? ; 𝑥 := 𝑥 − 1K♯SignZ≥0 = Z≥0 ≤Sign Z≥0

holds, to infer ⊢bca [Z≥0]Sign 𝑥 > 0? ; 𝑥 := 𝑥 − 1 [Z≥0]Sign. The rule (abs-inv) can now be applied to

derive ⊢bca [Z≥0]Sign (𝑥 > 0? ; 𝑥 := 𝑥−1)fix [Z≥0]Sign. As the final proof step, we apply (rec)with𝑛 = 1,

because we have already proved ⊢bca [Z>0]Sign 𝑥 > 0? ; 𝑥 := 𝑥 − 1 [Z≥0]Sign and Z≥0 = Z>0 ∨Sign Z≥0,

thus the premises of (rec) hold and ⊢bca [Z>0]Sign (𝑥 > 0? ; 𝑥 := 𝑥 − 1)fix [Z≥0]Sign can be inferred.

2 Background
2.1 Functions, Orders, and Computability
Given two sets 𝑆 and 𝑇 , ℘(𝑆) denotes the powerset of 𝑆 , 𝑆 ∖𝑇 denotes the set-difference between

𝑆 and 𝑇 , 𝑆 denotes the complement of 𝑆 with respect to some universe set to be determined by

the context, 𝑆 ⊊ 𝑇 denotes strict inclusion, |𝑆 | denotes the cardinality of 𝑆 , 𝜔 denotes the first

limit ordinal (thus |N| = |𝜔 |), 𝑓 : 𝑆 → 𝑇 denotes a totally defined function, 𝑓 : 𝑆 ↦→ 𝑇 a partially

defined function. If 𝑓 : 𝑆 ↦→ 𝑇 then 𝑓 (𝑥) ↓ denotes that 𝑓 is defined on 𝑥 , while 𝑓 (𝑥) ↑ denotes

that 𝑓 is not defined on 𝑥 ; the domain and range of 𝑓 are, resp., dom(𝑓 ) ≜ {𝑥 ∈ 𝑆 | 𝑓 (𝑥) ↓} and
rng(𝑓 ) ≜ {𝑓 (𝑥) ∈ 𝑇 | 𝑥 ∈ 𝑆∩dom(𝑓 )}. Given a subset𝑋 ⊆ 𝑆 , 𝑓 (𝑋 ) ≜ {𝑓 (𝑥) ∈ 𝑇 | 𝑥 ∈ 𝑋∩dom(𝑓 )}
denotes the image of 𝑓 on 𝑋 , where 𝑓 is defined.

A poset 𝑃 w.r.t. a partial order relation ≤ is denoted by ⟨𝑃,≤⟩. If a poset ⟨𝐿,≤⟩ is complete lattice

then ∨𝐿 denotes its lub, ∧𝐿 its glb,⊤𝐿 its top, ⊥𝐿 its bottom. If 𝑓 , 𝑔 : 𝑆 → 𝐿 and ⟨𝐿,≤⟩ is a poset then
the pointwise partial order relation 𝑓 ¤≤ 𝑔 is defined as usual: for all 𝑥 ∈ 𝑆 , 𝑓 (𝑥) ≤ 𝑔(𝑥). A function

𝑓 : 𝐿1 → 𝐿2 between complete lattices is additive (co-additive) if for all 𝑌 ⊆ 𝐿, 𝑓 (∨𝐿1
𝑌 ) = ∨𝐿2

𝑓 (𝑌 )
(𝑓 (∧𝐿1

𝑌 ) = ∧𝐿2
𝑓 (𝑌 )). Recall that any monotone function 𝑓 : 𝐿 → 𝐿 on a complete lattice 𝐿 always

has least and greatest fixpoints, denoted, resp., by lfp(𝑓 ) and gfp(𝑓 ).
Let us recall some basic notions in computability theory (reference textbooks include [Rogers

1987; Soare 1980]). In the following, the terms computable (in some given model of computation, e.g.,

Turing Machines), effective and recursive are synonym. Recursive functions are total computable

functions while partial recursive functions are partially defined computable functions. We assume

a surjective acceptable enumeration, also called coding, of partial recursive functions: For any

𝑒 ∈ N, 𝜑𝑒 denotes the partial recursive function of index (code) 𝑒 . As usual, we assume that partial

recursive functions are defined over some infinite denumerable domain D which includes the

natural numbers, i.e. N ⊆ D, so that, for any 𝑒 ∈ N, 𝜑𝑒 : D ↦→ D. Partial recursive functions 𝜑𝑒 are
associated with Turing Machines, or, equivalently, programs in some Turing complete programming

languageℒ. The semantics ofℒ is therefore a recursive function J·K : ℒ → (D ↦→ D) such that

for any p ∈ ℒ, JpK : D ↦→ D is a partial recursive function, whose domain is often denoted by
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46:6 Roberto Giacobazzi and Francesco Ranzato

𝑊p ≜ dom(𝜑p). W.l.o.g., we identify ℒ with its enumeration, so that we assume that JpK = 𝜑p.

A set 𝑆 ⊆ D is recursively enumerable (r.e.) if there exists p ∈ ℒ such that 𝑆 = dom(𝜑p), or,
equivalently, 𝑆 = rng(𝜑p) = JpK(D). It is known that 𝑆 is r.e. iff 𝑆 is the range of a total computable

function or empty, namely, iff 𝑆 is empty or 𝑆 = JpK(D) = rng(𝜑p) for some program p ∈ ℒ such

that JpK is a total recursive function. A set 𝑆 ⊆ D is recursive iff 𝑆 and 𝑆 are r.e. The set of all

r.e. subsets of D is denoted by ℘re (D). It is known [Soare 1980, Union Theorem 1.9, Chapter II]

that ⟨℘re (D), ⊆⟩ is a distributive lattice (i.e., union and intersection distribute over each other)

where ∅ and D are, resp., the bottom and top elements, and that for the set of recursive subsets

℘rec (D) ≜ {𝑆 ∈ ℘(D) | 𝑆, 𝑆 ∈ ℘re (D)}, it turns out that ⟨℘rec (D), ⊆⟩ is a Boolean algebra, namely,

a distributive lattice with complementation [Soare 1980, 1.15 (ii), Chapter II].

2.2 Abstract Interpretation
When the semantics of a programming language is specified on a given concrete domain of

properties𝐶 , abstract interpretation [Cousot 2021; Cousot and Cousot 1977] is the de facto standard
method to specify abstract semantics, that is, semantics defined on an abstract domain 𝐴 of

approximate program properties. Concrete and abstract domains are typically complete lattices

to guarantee the existence of join and meet operations used in the definition of concrete and

abstract semantics. Since several abstractions are possible, we use subscripts such as ≤𝐴 and ∨𝐴 to

disambiguate the underlying carrier set 𝐴 and omit the subscripts in the case of 𝐶 . Given complete

lattices𝐶 and𝐴, a pair of functions 𝛼 : 𝐶 → 𝐴 and 𝛾 : 𝐴 → 𝐶 forms a Galois connection (GC) when

for all 𝑐 ∈ 𝐶 , 𝑎 ∈ 𝐴, 𝛼 (𝑐) ≤𝐴 𝑎 ⇔ 𝑐 ≤ 𝛾 (𝑎) holds. The lattices 𝐶 and 𝐴 are called, resp., concrete

and abstract domain, and 𝛼 and 𝛾 are called, resp., abstraction and concretization maps. W.l.o.g.

[Cousot 2021, Section 11.6], we only consider GCs such that 𝛼𝛾 = id𝐴, called Galois insertions

(GIs), where 𝛼 is surjective, or, equivalently, 𝛾 is injective. Let us recall that 𝛼 is additive, 𝛾 is

co-additive, 𝛾𝛼 is an (upper) closure operator, that is, 𝛾𝛼 : 𝐶 → 𝐶 is a monotone, idempotent

and extensive (i.e., id𝐶 ¤≤𝐶 𝛾𝛼 holds) function, and 𝛾 (𝐴) ⊆ 𝐶 is closed under arbitrary glbs. The

class of abstract domains of 𝐶 is Abs(𝐶) ≜ {⟨𝐴,≤𝐴, 𝛼,𝛾⟩ | 𝛼 : 𝐶 → 𝐴, 𝛾 : 𝐴 → 𝐶 is a GI}, and
we write 𝐴𝛼,𝛾 ∈ Abs(𝐶), or simply 𝐴 ∈ Abs(𝐶), to mean that 𝐴 is an abstract domain related to

𝐶 by the abstraction and concretization maps 𝛼 and 𝛾 . The domain 𝐴𝛼,𝛾 ∈ Abs(𝐶) is disjunctive
when 𝛾 is additive (e.g., Sign in Figure 1 is disjunctive). When notationally convenient, we simply

use 𝐴 in place of the closure operator 𝛾𝛼 : 𝐶 → 𝐶 , e.g., Int({−3, 0, 2}) = [−3, 2] for the interval
domain Int. Given two abstract domains 𝐴𝛼𝐴,𝛾𝐴 , 𝐵𝛼𝐵 ,𝛾𝐵 ∈ Abs(𝐶), 𝐵 is a refinement of 𝐴 and 𝐴 a

simplification (or abstraction) of 𝐵, denoted by 𝐵 ⊑ 𝐴, when 𝛾𝐴 (𝐴) ⊆ 𝛾𝐵 (𝐵) holds, i.e., when 𝐵 is at

least as expressive as 𝐴. An abstract domain 𝐴𝛼,𝛾 ∈ Abs(𝐶) is trivial if: either (a) 𝛾𝛼 = 𝜆𝑥 .𝑥 holds,

i.e. 𝐴 boils down to an isomorphic representation of the concrete domain 𝐶 , and in this case we

use the notation idAbs; or (b) 𝛾𝛼 = 𝜆𝑥.⊤𝐶 holds, i.e., 𝐴 is a singleton domain which can express

precisely the greatest element ⊤𝐶 only, and here we denote it by ⊤Abs. When𝐶 is a complete lattice,

⟨Abs(𝐶), ⊑, ⊔,⊓,⊤Abs, idAbs⟩ denotes the so-called lattice of abstract interpretations [Cousot and
Cousot 1979, Section 8], meaning that there exist the most concrete simplification (i.e., lub ⊔) and
the most abstract refinement (i.e., glb ⊓) of any family of abstract domains.

Abstract interpretation is intended to approximate properties of program semantics. Hence, we

will often assume that the concrete domain can express the properties of any program with finitely

many variables assuming values on a semantic domain D. Moreover, we assume that programs

range in a given Turing complete programming language ℒ. Both these assumptions provide

the computability requirements for the concrete and abstract domains. For the concrete domain,

this corresponds to fix 𝐶 = ℘re (D), i.e., for each 𝑆 ∈ ℘re (D) there exists a program p ∈ ℒ such

that JpKD = 𝑆 . For the abstract domain, let us observe that static program analysis by abstract
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interpretation is intended to associate with the program under inspection a recursive, namely

decidable, approximation of its generally undecidable semantics. This is because static program

analysis requires decidable answers to undecidable questions such as those expressed as extensional

properties of programs, e.g., whether JpKpre ⊆ post holds, for some pre, post ⊆ D. The notion of

decidable or recursive abstract interpretation has been studied by Cousot et al. [2018] for the sake of

comparing the hardness of analyzing and verifying programs, where an abstract domain is defined

as a collection of recursive sets such that the relation of subset inclusion between them is decidable.

An abstract domain 𝐴𝛼,𝛾 is here called recursive when the abstraction of any r.e. set is recursive,

namely, for any 𝑆 ∈ ℘re (D), 𝛾𝛼 (𝑆) ∈ ℘rec (D) holds. Clearly, the trivial top abstraction closure

𝜆𝑥.D corresponds to a recursive abstract domain {⊤𝐴}, while the trivial identity abstraction 𝜆𝑥 .𝑥

corresponds to a nonrecursive abstract domain, which is the concrete domain ℘re (D) itself.
Given an abstract domain 𝐴𝛼,𝛾 ∈ Abs(𝐶) and a monotone concrete operation 𝑓 : 𝐶 → 𝐶 (a

generalization to 𝑛-ary functions of type 𝐶𝑛 → 𝐶 can be easily done componentwise), a monotone

abstract function 𝑓 ♯ : 𝐴 → 𝐴 is a correct (or sound) approximation of 𝑓 when 𝛼 𝑓 ¤≤ 𝑓 ♯𝛼 holds.

It is known that if 𝑓 ♯ is a correct approximation of 𝑓 then we also have fixpoint correctness, i.e.,

𝛼 (lfp(𝑓 )) ≤𝐴 lfp(𝑓 ♯) holds. The best correct approximation (bca) of 𝑓 in 𝐴 is defined as the abstract

function 𝑓 𝐴 ≜ 𝛼 𝑓 𝛾 : 𝐴 → 𝐴. The term “best” is justified by the well-known fact [Cousot and

Cousot 1979, Section 7.2] that an abstract function 𝑓 ♯ : 𝐴 → 𝐴 is a correct approximation of 𝑓 iff

𝑓 𝐴 ¤≤ 𝑓 ♯ holds, so that the bca 𝑓 𝐴 turns out to be the most precise, w.r.t. the pointwise ordering ¤≤,
among the correct approximations of 𝑓 on 𝐴.

The abstract function 𝑓 ♯ is an 𝛼-complete approximation of 𝑓 (or just 𝛼-complete; Giacobazzi

et al. [2000] use the term backward complete) if 𝛼 𝑓 = 𝑓 ♯𝛼 holds. The abstract domain 𝐴 is called an

𝛼-complete abstraction for 𝑓 when there exists an 𝛼-complete approximation 𝑓 ♯ : 𝐴 → 𝐴 of 𝑓 on

the abstract domain 𝐴, and if this is the case then necessarily 𝑓 ♯ = 𝑓 𝐴 holds, i.e., 𝑓 ♯ is the bca. This

form of completeness intuitively means that the abstract behaviour of 𝑓 ♯ on 𝐴, i.e. the function

𝑓 ♯𝛼 : 𝐶 → 𝐴, exactly matches the abstraction in 𝐴 of the behaviour of 𝑓 , i.e. the function 𝛼 𝑓 . In an

𝛼-complete approximation 𝑓 ♯, the only loss of precision is due to the abstract domain and not to the

definition of the abstract function 𝑓 ♯ itself. Let us also recall that local 𝛼-completeness means that

the 𝛼-completeness equation holds on some subset 𝑆 of the concrete domain, that is, if 𝑆 ⊆ 𝐶 then

𝑓 ♯ is a locally 𝛼-complete on 𝑆 when for all 𝑐 ∈ 𝑆 , 𝛼 𝑓 (𝑐) = 𝑓 ♯𝛼 (𝑐) holds [Bruni et al. 2021, 2023]. A
second orthogonal form of completeness has been studied. The abstract function 𝑓 ♯ is a 𝛾-complete

approximation of 𝑓 (or just 𝛾-complete) if 𝑓 𝛾 = 𝛾 𝑓 ♯ holds. Also,𝐴 is called a 𝛾-complete abstraction

for 𝑓 if there exists a 𝛾-complete approximation 𝑓 ♯ : 𝐴 → 𝐴 of 𝑓 . Similarly to 𝛼-completeness, 𝐴 is

a 𝛾-complete abstraction for 𝑓 when there exists a 𝛾-complete approximation 𝑓 ♯ : 𝐴 → 𝐴 of 𝑓 , and,

in this case, 𝑓 ♯ is indeed the bca, i.e. 𝑓 ♯ = 𝑓 𝐴 necessarily holds. The intuition of 𝛾-completeness

(sometimes called exactness [Miné 2017] or forward completeness [Giacobazzi and Quintarelli

2001]) is that 𝑓 ♯ defined on 𝐴 behaves exactly as 𝑓 , up to the meaning of abstract values provided

by the concretization function 𝛾 . Local 𝛾-completeness is defined as expected: given a subset of

abstract values 𝑆 ⊆ 𝐴, 𝑓 ♯ is a locally 𝛾-complete on 𝑆 when for all 𝑎 ∈ 𝑆 , 𝑓 𝛾 (𝑎) = 𝛾 𝑓 ♯ (𝑎).

2.3 Regular Commands
Following O’Hearn [2020]’s programming model for incorrectness logic, in the following the

programming language ℒ is assumed to be the language Reg of regular commands:

Reg ∋ r ::= c | r; r | r ⊕ r | rfix | r★

which is general enough to cover deterministic imperative languages as well as nondeterministic

and probabilistic programming. The language Reg is parametric on the syntax of basic commands
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c ∈ BCmd, which can be instantiated with different kinds of instructions such as (deterministic or

nondeterministic or parallel) assignments, (Boolean) guards or assumptions, local variable primi-

tives, etc. The term r1; r2 represents sequential composition, r1 ⊕ r2 represents a nondeterministic

choice command, r★ is the Kleene star that executes r any number (possibly zero) of times before

exiting. As a shorthand, we write r𝑛 for the composition r; ...; r of 𝑛 instances of r. Our definition
of Reg also includes rfix

, that represents, given a precondition 𝑐 , the least inductive invariant of r
implied by 𝑐 , that is, the least fixpoint of 𝜆𝑥.𝑐 ∨ JrK𝑥 . The motivation for including the command

rfix
comes from the fact that while its concrete predicate transformer semantics commonly (i.e.,

when basic commands have additive semantics) coincides with that of r★, the inductive abstract
semantics of rfix

and r★ on a given abstract domain may differ, as shown below in Remark 2.2.

We assume that basic commands have a semantics L ·M : BCmd → 𝐶 → 𝐶 on a complete lattice

𝐶 such that LcM is an additive function. This assumption can be done w.l.o.g. in collecting program

semantics—a.k.a. predicate transformer semantics—since their basic command semantics on the

concrete domain ⟨℘(D), ⊆⟩ are always defined as additive lifting of an underlying function 𝑓 on

stores in D, i.e., 𝜆𝑆 ∈ ℘(D).{𝑓 (𝜎) ∈ D | 𝜎 ∈ 𝑆}. The concrete semantics J·K : Reg → 𝐶 → 𝐶 of

regular commands is inductively defined as follows:

JcK𝑐 ≜ LcM𝑐 Jr1; r2K𝑐 ≜ Jr2KJr1K𝑐 Jr1 ⊕ r2K𝑐 ≜ Jr1K𝑐 ∨ Jr2K𝑐

JrfixK𝑐 ≜ lfp(𝜆𝑥 ∈ 𝐶. 𝑐 ∨ JrK𝑥) Jr★K𝑐 ≜
∨{JrK𝑘𝑐 | 𝑘 ∈ N}

(1)

2.3.1 Abstract Semantics. The best inductive abstract semantics J·K♯
𝐴

: Reg → 𝐴 → 𝐴 of regular

commands on an abstract domain 𝐴𝛼,𝛾 ∈ Abs(𝐶) is defined as follows:

JcK♯
𝐴
𝑎 ≜ JcK𝐴𝑎 = 𝛼JcK𝛾 (𝑎) Jr1; r2K

♯

𝐴
𝑎 ≜ Jr2K

♯

𝐴
Jr1K

♯

𝐴
𝑎 Jr1 ⊕ r2K

♯

𝐴
𝑎 ≜ Jr1K

♯

𝐴
𝑎 ∨𝐴 Jr2K

♯

𝐴
𝑎

JrfixK♯
𝐴
𝑎 ≜ lfp(𝜆𝑥 ∈ 𝐴. 𝑎 ∨𝐴 JrK♯

𝐴
𝑥) Jr★K♯

𝐴
𝑎 ≜

∨
𝐴{JrK♯

𝐴
𝑘𝑎 | 𝑘 ∈ N}

(2)

Since we are interested in reasoning on best possible abstract semantics, note that as abstract

semantics JcK♯
𝐴
of basic commands c ∈ BCmd we always consider the bcas on 𝐴 of their concrete

semantics, i.e., no loss of precision is due to their abstract interpretation. Let us remark that

definition (2) is the standard inductive abstract interpretation of programs without widening, where
the abstract transfer functions of basic commands are assumed to be the bcas. It is easy to check,

by structural induction, that the abstract semantics in (2) is monotonic—provided that JcK for basic
commands are monotone functions—and correct (or sound), i.e., 𝛼JrK ¤≤𝐴 JrK♯

𝐴
𝛼 holds.

Remark 2.1 (On the Lack of Widening). It is worth noting that the use of widening operators

could jeopardize the bca property. In fact, there exists no notion of “best” widening [Cousot 2021,

Chapter 32], and considering any sound widening is not viable. As a limit case, the following

well-known definition (e.g. [Miné 2017, Example 2.16]):

𝑎 ∇n 𝑏 ≜

{
𝑎 if 𝑏 ≤𝐴 𝑎

⊤𝐴 otherwise

provides a naïve legal widening 𝑎 ∇n 𝑏 that may lose all the computed information 𝑎. Thus, consid-

ering widening operators in the definition (2) of the abstract semantics J·K♯
𝐴
cannot be meaningful

in the context of studying its bca properties. □

Remark 2.2 (rfix vs r★). By Lemma 2.3 (ii), it turns out that JrfixK = Jr★K holds, because the concrete
semantics of basic commands JcK is assumed to be additive. However, in general, this is not the

case for the abstract semantics, where Jr★K♯
𝐴
𝑎 ≤𝐴 JrfixK♯

𝐴
𝑎 always holds but it may happen that

Jr★K♯
𝐴
𝑎 ⪇𝐴 JrfixK♯

𝐴
𝑎. To show this, consider the following program:

r ≜ (𝑥 = 2?;𝑥 := 𝑥 + 3) ⊕ 𝑥 := 𝑥 − 3 .
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The abstract semantics of rfix
and r★ on intervals with input [3, 4] ∈ Int are as follows:

Jr★K♯Int [3, 4] =
∨

Int
{
[3, 4], [0, 1] = JrK♯Int [3, 4], [−3,−2] = JrK♯Int [0, 1],
[−6,−5] = JrK♯Int [−3,−2], [−9,−8] = JrK♯Int [−6,−5], ...

}
,

JrfixK♯Int [3, 4] =
∨

Int
{
⊥Int, [3, 4] = [3, 4] ∨Int JrK♯Int⊥Int, [0, 4] = [3, 4] ∨Int JrK♯Int [3, 4],
[−3, 5] = [3, 4] ∨Int JrK♯Int [0, 4], [−6, 5] = [3, 4] ∨Int JrK♯Int [−3, 5], ...

}
.

Hence, it turns out that Jr★K♯Int [3, 4] = [−∞, 4] ⪇Int [−∞, 5] = JrfixK♯Int [3, 4]. This different behavior
depends on the fact that the function Jr★K♯Int is not additive, for example:

Jr★K♯Int [1, 1] ∨Int Jr★K♯Int [3, 3] = [−2, 0] ⪇Int [−2, 5] = Jr★K♯Int ( [1, 1] ∨Int [3, 3]) .

It is also worth noticing that JrfixK𝛾Int ( [3, 4]) = Jr★K𝛾Int ( [3, 4]) = {𝑧 ∈ Z | 𝑧 ≤ 4,∀𝑛 ∈ N.𝑧 ≠ 2 − 3𝑛},
so that 𝛼IntJr★K𝛾Int ( [3, 4]) = [−∞, 4] = Jr★K♯Int [3, 4], i.e., Jr★K♯Int [3, 4] is the bca, while the bca

property does not hold for rfix
since 𝛼IntJrfixK𝛾Int ( [3, 4]) = [−∞, 4] ≠ [−∞, 5] = JrfixK♯Int [3, 4]. □

Remark 2.2 can be generalized as follows. An abstract domain 𝐴𝛼,𝛾 ∈ Abs(𝐶) is called weakly
disjunctive when: ∀𝑆 ⊆ 𝐴. ∨𝐴 𝑆 ≠ ⊤𝐴 ⇒ 𝛾 (∨𝐴𝑆) = ∨𝛾 (𝑆). Therefore, in a weakly disjunctive

abstract domain 𝐴 we have that disjunction is either exactly represented in 𝐴 or 𝐴 is unable

to provide any information on that disjunction. Note that the flat abstract domain for constant

propagation [Wegman and Zadeck 1991] is weakly disjunctive, while more structured abstract

domains, e.g. the interval domain Int, typically are not weakly disjunctive. In what follows, we

characterize the abstract domains 𝐴 for which Jr★K♯
𝐴
= JrfixK♯

𝐴
holds.

Lemma 2.3 (Additivity of Concrete and Abstract Semantics). Assume that for all basic com-
mands c ∈ BCmd, JcK is an additive function.

(i) For all r ∈ Reg, the concrete semantics JrK is an additive function.
(ii) If, additionally, 𝐴 ∈ Abs(𝐶) is a disjunctive abstract domain then the abstract semantics JrK♯

𝐴
is

an additive function, and Jr★K♯
𝐴
= JrfixK♯

𝐴
holds.

Proof. (i) By structural induction on r ∈ Reg. Clear for r1; r2 and r1 ⊕ r2. Let us prove it for rfix
.

Given 𝑌 ⊆ 𝐶 , we have that:

∨{lfp(𝜆𝑥 ∈ 𝐶.𝑦 ∨ JrK𝑥) | 𝑦 ∈ 𝑌 } = [as 𝑓 (lfp(𝑓 )) = lfp(𝑓 )]
∨{𝑦 ∨ JrK(lfp(𝜆𝑥 ∈ 𝐶.𝑦 ∨ JrK𝑥)) | 𝑦 ∈ 𝑌 } = [as ∨{𝑠 ∨ 𝑡 | 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 } = (∨𝑆) ∨ (∨𝑇 )]

(∨𝑌 ) ∨ (∨{JrK(lfp(𝜆𝑥 ∈ 𝐶.𝑦 ∨ JrK𝑥)) | 𝑦 ∈ 𝑌 }) = [by inductive hypothesis]

(∨𝑌 ) ∨ JrK(∨{lfp(𝜆𝑥 ∈ 𝐶.𝑦 ∨ JrK𝑥) | 𝑦 ∈ 𝑌 }) .

Hence, lfp(𝜆𝑥 ∈ 𝐶. (∨𝑌 ) ∨ JrK𝑥) ≤ ∨{lfp(𝜆𝑥 ∈ 𝐶.𝑦 ∨ JrK𝑥) | 𝑦 ∈ 𝑌 } holds. Conversely, if 𝑦 ∈ 𝑌 ,

from 𝜆𝑥 ∈ 𝐶.𝑦 ∨ JrK𝑥) ¤≤ 𝜆𝑥 ∈ 𝐶. (∨𝑌 ) ∨ JrK𝑥 follows that ∨{lfp(𝜆𝑥 ∈ 𝐶.𝑦 ∨ JrK𝑥) | 𝑦 ∈ 𝑌 } ≤
lfp(𝜆𝑥 ∈ 𝐶. (∨𝑌 ) ∨ JrK𝑥). Hence, JrfixK(∨𝑌 ) = ∨{JrfixK𝑦 | 𝑦 ∈ 𝑌 }. Since JrfixK = Jr★K, additivity
follows for r★ as well.

(ii) By structural induction on r ∈ Reg. For basic commands c ∈ BCmd, JcK♯
𝐴
= 𝛼JcK𝛾 is additive

being a composition of additive functions. Clear for r1; r2 and r1 ⊕ r2. The proof for rfix
is the same

as in (i). For abstract semantics, JrfixK♯
𝐴
= Jr★K♯

𝐴
does not hold in general, therefore additivity of Jr★K

is proved as follows for all 𝑌 ⊆ 𝐴:

Jr★K♯
𝐴
(∨𝐴𝑌 ) =

∨
𝐴{JrK♯

𝐴
𝑘 (∨𝐴𝑌 ) | 𝑘 ∈ N} =∨

𝐴{∨𝐴{JrK♯
𝐴
𝑘𝑦 | 𝑦 ∈ 𝑌 } | 𝑘 ∈ N} =∨

𝐴{∨𝐴{JrK♯
𝐴
𝑘𝑦 | 𝑘 ∈ N} | 𝑦 ∈ 𝑌 } =∨

𝐴{Jr★K♯
𝐴
𝑦 | 𝑦 ∈ 𝑌 } . □
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Theorem 2.4 (Equivalence of Abstract Semantics for rfix and r★). Let JcK be additive for all
c ∈ BCmd and 𝐴 be nontrivial. For any r ∈ Reg, Jr★K♯

𝐴
= JrfixK♯

𝐴
iff 𝐴 is weakly disjunctive.

Proof. (⇒) Assume 𝐴 nontrivial and not weakly disjunctive. Thus, there exist two elements

𝑎1, 𝑎2 ∈ 𝐴 such that 𝛾 (𝑎1) ∨𝛾 (𝑎2) ⊊ 𝛾 (𝑎1 ∨𝐴 𝑎2) ⊊ D. Let 𝑑 ∈ 𝛾 (𝑎2), 𝑐 ∈ 𝛾 (𝑎1 ∨𝐴 𝑎2)∖𝛾 (𝑎1) ∨𝛾 (𝑎2),
and 𝑏 ∈ D ∖ 𝛾 (𝑎1 ∨𝐴 𝑎2). Following Remark 2.2 it is enough to consider the following program:

r ≜ (𝑥 = 𝑐?; 𝑥 := 𝑏) ⊕ 𝑥 := 𝑑. It is immediate to see that Jr★K♯
𝐴
𝑎1 ≠ JrfixK♯

𝐴
𝑎1.

(⇐) Assume, by contradiction, that there exist r ∈ Reg and 𝑎 ∈ 𝐴 such that Jr★K♯
𝐴
𝑎 ⪇𝐴 JrfixK♯

𝐴
𝑎.

Consider the set 𝑆 ≜ {JrK♯
𝐴
𝑘𝑎 | 𝑘 ∈ N} ⊆ 𝐴. It is clear that ∨𝐴𝑆 ≠ ⊤𝐴, otherwise Jr★K♯

𝐴
𝑎 = JrfixK♯

𝐴
𝑎 =

⊤𝐴. Assume that ∨𝛾 (𝑆) = 𝛾 (∨𝐴𝑆). Because, by Lemma 2.3, JcK is additive for all c ∈ BCmd
and 𝐴 is weakly disjunctive, then, for all r ∈ Reg, JrK♯

𝐴
is additive on 𝑆 . Therefore,

∨
𝐴 𝑆 is a

fixpoint of 𝜆𝑥 ∈ 𝐴. 𝑎 ∨𝐴 JrK♯
𝐴
𝑥 . Let 𝑑 ∈ 𝐴 be a fixpoint of 𝜆𝑥 ∈ 𝐴. 𝑎 ∨𝐴 JrK♯

𝐴
𝑥 . By monotonicity

of JrK♯
𝐴
, it is immediate to prove, by induction on 𝑘 , that for all 𝑘 ∈ N, JrK♯

𝐴
𝑘𝑎 ≤𝐴 𝑑 , so that

Jr★K♯
𝐴
𝑎 =

∨
𝐴 𝑆 = JrfixK♯

𝐴
𝑎, which is a contradiction, thus proving that Jr★K♯

𝐴
= JrfixK♯

𝐴
. □

In the following, we will denote through Regfix the programs in Reg without Kleene star, i.e.,

Regfix ∋ r ::= c | r; r | r ⊕ r | rfix
.

2.4 While Programs
We consider standard basic commands used in while programs, i.e., no-op, deterministic assignments

and Boolean guards: BCmd ∋ c ::= skip | 𝑥 := a | b?, where a ranges over deterministic arithmetic

expressions on integer values in Z, variables 𝑥 ∈ Var , and b ranges over deterministic Boolean

expressions. A program store 𝜎 : 𝑉 → Z is a total function from a finite set of variables of

interest 𝑉 ⊆ Var to values, and D ≜ 𝑉 → Z denotes the set of stores on the variables ranging in

a set 𝑉 that, for simplicity, is left implicit. The concrete domain is ⟨℘(D), ⊆⟩ and the semantics

L ·M : BCmd → ℘(D) → ℘(D) of basic expressions is the usual (and additive) one: LskipM𝑋 ≜ 𝑋 ,

L𝑥 := aM𝑋 ≜ {𝜎 [𝑥 ↦→ {|a|}𝜎] | 𝜎 ∈ 𝑋, {|a|}𝜎 ↓} , Lb?M𝑋 ≜ {𝜎 ∈ 𝑋 | {|b|}𝜎 = tt} , where store update
𝜎 [𝑥 ↦→ 𝑣] and the semantics of arithmetic expressions {|a|} : D ↦→ Z and Boolean expressions

{|b|} : D ↦→ {tt,ff} are defined as expected. In particular, we assume that for all r ∈ Reg and 𝜎 ∈ D,
JrK{𝜎} = {𝜎 ′} means that in the underlying deterministic Turing complete computational (e.g.,

operational) model for Reg programs, the program r on input 𝜎 terminates with final store 𝜎 ′
,

whereas JrK{𝜎} = ∅ means nontermination. Moreover, by additivity, we have that for all 𝑋 ∈ ℘(D),
JrK𝑋 = {𝜎 ′ ∈ D | ∃𝜎 ∈ 𝑋 . JrK{𝜎} = {𝜎 ′}}, JrK∅ = ∅, and JrKD = 𝑆 means that 𝑆 is the range of

the output stores of r. A deterministic imperative while language can be defined using guarded

branching and loop commands as syntactic sugar as follows [Fischer and Ladner 1979; Kozen 1997]:

if b then c1 else c2 ≜ (b?; c1) ⊕ (¬b?; c2) and while b do c ≜ (b?; c)fix
; ¬b?. For programs with

just one variable, ℘(Z) will be used to represent sets of stores.

3 The bca Property
For the sake of generality, we assume that the inductive concrete semantics (1) of programs is given

on a generic complete lattice ⟨𝐶,≤⟩. As a notable example, considering a generic complete lattice

rather than the collecting predicate transformer domain ⟨℘(D), ⊆⟩, allows us to encompass the

case of probabilistic programs whose concrete domain is given by (sub)distributions over a carrier

set 𝑋 , an application scenario investigated in Zilberstein et al. [2023]’s outcome logic.

Definition 3.1 (Local and Global bca). Consider r ∈ Reg and 𝐴𝛼,𝛾 ∈ Abs(𝐶).
(i) r satisfies the local bca (lbca) property on 𝑎 ∈ 𝐴, denoted bca𝐴 (r, 𝑎), when JrK♯

𝐴
𝑎 = 𝛼JrK𝛾 (𝑎).

(ii) r satisfies the global bca (gbca) property on 𝐴, denoted by bca𝐴 (r), when JrK♯
𝐴
= 𝛼JrK𝛾 . □
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Lemma3.2 (Choice Preserves bca). For all𝑎 ∈ 𝐴, if bca𝐴 (r1, 𝑎) and bca𝐴 (r2, 𝑎) then bca𝐴 (r1 ⊕ r1, 𝑎).
Also, if bca𝐴 (r1) and bca𝐴 (r2) then bca𝐴 (r1 ⊕ r1).

Proof. Given any 𝑎 ∈ 𝐴, we have that:

Jr1 ⊕ r2K
♯

𝐴
𝑎 = [by definition (2)]

Jr1K
♯

𝐴
𝑎 ∨𝐴 Jr2K

♯

𝐴
𝑎 = [by bca𝐴 (r𝑖 , 𝑎)]

𝛼Jr1K𝛾 (𝑎) ∨𝐴 𝛼Jr2K𝛾 (𝑎) = [by additivity of 𝛼]

𝛼 (Jr1K𝛾 (𝑎) ∨ Jr2K𝛾 (𝑎)) = 𝛼Jr1 ⊕ r2K𝛾 (𝑎). [by definition (1)]

This also proves the second implication. □

Thus, the definition of the abstract choice operation as lub of 𝐴 in (2) does not introduce loss

of information hampering the (local or global) bca property. This property of preserving bcas,

in general, does not hold for sequential composition, that is, by assuming bca𝐴 (r1) and bca𝐴 (r2),
Jr1; r2K

♯

𝐴
is not guaranteed to be the bca.

Example 3.3 (Composition does not Preserve bca). Consider the following program

p ≜ (𝑧 := 2; 𝑧 := 𝑧 + 1); 𝑧 := 𝑧 − 1 (3)

analyzed on the abstract domain Sign of Figure 1. It turns out that JpK♯SignZ = Z≥0, whereas

𝛼SignJpK𝛾Sign (Z) = Z>0, so that bcaSign (p) does not hold. On the other hand, bcaSign (𝑧 := 2; 𝑧 := 𝑧+1)
holds, because for all 𝑎 ∈ Sign ∖ {∅}, we have that J𝑧 := 2; 𝑧 := 𝑧 + 1K♯Sign𝑎 = Z>0 = 𝛼Sign ({3}) =
𝛼SignJ𝑧 := 2; 𝑧 := 𝑧 + 1K𝛾Sign (𝑎), and J𝑧 := 2; 𝑧 := 𝑧 + 1K♯Sign∅ = ∅ = 𝛼SignJ𝑧 := 2; 𝑧 := 𝑧 + 1K𝛾Sign (∅)
also holds. Moreover, we have that bcaSign (𝑧 := 𝑧 − 1) holds by definition (2), as 𝑧 := 𝑧 − 1 is a basic

command. This shows that composition preserves neither the global nor the local bca property. □

We provide some simple completeness conditions guaranteeing that the global bca property is

preserved when sequentially composing programs.

Lemma 3.4 (Gbca for Sequential Composition). Let 𝐴𝛼,𝛾 ∈ Abs(𝐶), and assume that bca𝐴 (r1)
and bca𝐴 (r2) hold.
(i) If 𝐴 is 𝛾-complete for r1 or 𝛼-complete for r2 then bca𝐴 (r1; r2) holds.
(ii) bca𝐴 (r1; r2) holds iff r2 is locally 𝛼-complete on {Jr1K𝛾 (𝑎) ∈ 𝐶 | 𝑎 ∈ 𝐴}.

Proof.

(i) We have the following two cases:

𝛼Jr2KJr1K𝛾 = [𝐴 is 𝛾-complete for r1]

𝛼Jr2K𝛾Jr1K
♯

𝐴
= [r2 global bca]

Jr2K
♯

𝐴
Jr1K

♯

𝐴

𝛼Jr2KJr1K𝛾 = [𝐴 is 𝛼-complete for r2]

Jr2K
♯

𝐴
𝛼Jr1K𝛾 = [r1 global bca]

Jr2K
♯

𝐴
Jr1K

♯

𝐴

Hence, in both cases, by definitions (1) and (2), we have that 𝛼Jr1; r2K𝛾 = Jr2K
♯

𝐴
Jr1K

♯

𝐴
= Jr1; r2K

♯

𝐴
.

(ii)

𝛼Jr1; r2K𝛾 = Jr1; r2K
♯

𝐴
⇔ [by definitions (1) and (2)]

𝛼Jr2KJr1K𝛾 = Jr2K
♯

𝐴
Jr1K

♯

𝐴
⇔ [r1 and r2 global bca]

𝛼Jr2KJr1K𝛾 = 𝛼Jr2K𝛾𝛼Jr1K𝛾 ⇔ [by definition of local 𝛼-completeness]

𝛼Jr2K(Jr1K(𝛾 (𝐴))) = Jr2K𝐴𝛼 (Jr1K(𝛾 (𝐴))). □

This result will be exploited in Section 7 to define the rule handling sequential compositions in the

program logic for inferring the bca property.
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It also turns out that Kleene star and fixpoints, in general, do not preserve bcas, that is, by

assuming bca𝐴 (r), both Jr★K♯
𝐴
and JrfixK♯

𝐴
are not guaranteed to be the bca.

Example 3.5 (Fix and Kleene Star do not Preserve bca). Consider as concrete domain the chain

of integer numbers 𝐶 = {0, 1, 2, 3}, as abstract domain 𝐴𝛼,𝛾 ∈ Abs(𝐶) the subset 𝐴𝛼,𝛾 = {0, 2, 3},
which, being closed under glb’s, is an abstraction of 𝐶 with 𝛾 = 𝜆𝑥 .𝑥 and 𝛼 = {0 ↦→ 0, 1 ↦→ 2, 2 ↦→
2, 3 ↦→ 3}. We consider a basic command c ∈ BCmd having the following semantics JcK : 𝐶 → 𝐶 ,

which is obviously an additive function: JcK ≜ {0 ↦→ 1, 1 ↦→ 1, 2 ↦→ 3, 3 ↦→ 3}. The corresponding
bca JcK♯

𝐴
= 𝛼JcK𝛾 : 𝐴 → 𝐴 is therefore as follows: JcK♯

𝐴
= {0 ↦→ 2, 2 ↦→ 3, 3 ↦→ 3}.

Hence, for the input abstract value 0 ∈ 𝐴, we have the following equalities:

Jc★K𝛾 (0) =∨
𝐶 {JcK𝑛𝛾 (0) | 𝑛 ∈ N} =∨{0, 1} = 1 = lfp(𝜆𝑥 ∈ 𝐶.𝛾 (0) ∨𝐶 JcK𝑥) = JcfixK𝛾 (0) ,

Jc★K♯
𝐴

0 =
∨

𝐴{JcK♯
𝐴
𝑛
0 | 𝑛 ∈ N} =∨{0, 2, 3} = 3 = lfp(𝜆𝑎 ∈ 𝐴. 0 ∨𝐴 JcK♯

𝐴
𝑎) = JcfixK♯

𝐴
0 ,

𝛼Jc★K𝛾 (0) = 𝛼JcfixK𝛾 (0) = 𝛼 (1) = 2 .

Thus, it turns out that bca𝐴 (c) holds—by definition (2) because c is a basic command—while both

bca𝐴 (c★) and bca𝐴 (cfix) do not hold. □

It is known [Cousot and Cousot 1979, Theorem 7.1.0.3] that 𝛼-completeness is preserved by

fixpoints. Here, we show that 𝛼- or 𝛾-completeness is a sufficient condition guaranteeing that

the Kleene star preserves the bca property, while just 𝛼-completeness ensures that the fixpoint

command preserves the bca.

Lemma 3.6 (Gbca for Kleene Star and Fix). Let r ∈ Reg and 𝐴𝛼,𝛾 ∈ Abs(𝐶).
(i) If 𝐴 is either 𝛼-complete or 𝛾-complete for r (consequently, bca𝐴 (r) holds, cf. Section 2.2), then

bca𝐴 (r★) holds.
(ii) If 𝐴 is 𝛼-complete for r (consequently, bca𝐴 (r) holds, cf. Section 2.2), then bca𝐴 (rfix) holds.

Proof. (i) We show that

∀𝑛 ∈ N. JrK♯
𝐴
𝑛𝑎 = 𝛼JrK𝑛𝛾 (𝑎) (4)

Assume that 𝛼-completeness holds. For all 𝑎 ∈ 𝐴, we show by induction on 𝑛 ∈ N that JrK♯
𝐴
𝑛𝑎 =

𝛼JrK𝑛𝛾 (𝑎). For 𝑛 = 0, JrK♯
𝐴

0𝑎 = 𝑎 = 𝛼𝛾𝑎 = 𝛼JrK0𝛾 (𝑎). For 𝑛 + 1, we have that:

JrK♯
𝐴
𝑛+1𝑎 = JrK♯

𝐴
JrK♯

𝐴
𝑛𝑎 = [by inductive hypothesis]

JrK♯
𝐴
𝛼JrK𝑛𝛾 (𝑎) = [by 𝛼-completeness]

𝛼JrKJrK𝑛𝛾 (𝑎) = 𝛼JrK𝑛+1𝛾 (𝑎) .
Assume that 𝛾-completeness holds. For all 𝑎 ∈ 𝐴, we show by induction on 𝑛 ∈ N that 𝛾JrK♯

𝐴
𝑛𝑎 =

JrK𝑛𝛾 (𝑎). For 𝑛 = 0, 𝛾JrK♯
𝐴

0𝑎 = 𝛾 (𝑎) = JrK0𝛾 (𝑎). For 𝑛 + 1, we have that:

𝛾JrK♯
𝐴
𝑛+1𝑎 = 𝛾JrK♯

𝐴
JrK♯

𝐴
𝑛𝑎 = [by 𝛾-completeness]

JrK𝛾JrK♯
𝐴
𝑛𝑎 = [by inductive hypothesis]

JrKJrK𝑛𝛾 (𝑎) = JrK𝑛+1𝛾 (𝑎) .
Hence, also under the assumption of 𝛾-completeness, we obtain that for all 𝑛 ∈ N, JrK♯

𝐴
𝑛𝑎 =

𝛼𝛾JrK♯
𝐴
𝑛𝑎 = 𝛼JrK𝑛𝛾 (𝑎).

Thus, for r★ we have that:

Jr★K♯
𝐴
𝑎 =

∨{JrK♯
𝐴
𝑛𝑎 | 𝑛 ∈ N} = [by (4)]∨{𝛼JrK𝑛𝛾 (𝑎) | 𝑛 ∈ N} = [by additivity of 𝛼]

𝛼 (∨{JrK𝑛𝛾 (𝑎) | 𝑛 ∈ N} = 𝛼Jr★K𝛾 (𝑎) .
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(ii) First, we have that:

𝑎 ∨𝐴 JrK♯
𝐴
(𝛼 (lfp(𝜆𝑥 .𝛾 (𝑎) ∨𝐶 JrK𝑥))) = [by 𝛼-completeness]

𝑎 ∨𝐴 𝛼JrK(lfp(𝜆𝑥.𝛾 (𝑎) ∨𝐶 JrK𝑥)) = [by additivity of 𝛼 and 𝛼𝛾 = id]

𝛼 (𝛾 (𝑎) ∨𝐶 JrK(lfp(𝜆𝑥.𝛾 (𝑎) ∨𝐶 JrK𝑥)) = [by fixpoint]

𝛼 (lfp(𝜆𝑥.𝛾 (𝑎) ∨𝐶 JrK𝑥)) .
Hence, lfp(𝜆𝑥 ∈ 𝐴.𝑎 ∨𝐴 JrK♯

𝐴
𝑥) ≤𝐴 𝛼 (lfp(𝜆𝑥 .𝛾 (𝑎) ∨𝐶 JrK𝑥)). Conversely, let 𝑏 ∈ 𝐴 such that

𝑎 ∨𝐴 JrK♯
𝐴
𝑏 = 𝑏. Then, 𝑎 ≤𝐴 𝑏 and JrK♯

𝐴
𝑏 ≤𝐴 𝑏, and, in turn, 𝛾 (𝑎) ≤𝐶 𝛾 (𝑏) and JrK♯

𝐴
𝛼𝛾 (𝑏) ≤𝐴 𝑏, so

that, by 𝛼-completeness, 𝛼JrK𝛾 (𝑏) ≤𝐴 𝑏, and, in turn, JrK𝛾 (𝑏) ≤𝐶 𝛾 (𝑏). Thus, 𝛾 (𝑎) ∨𝐶 JrK𝛾 (𝑏) ≤𝐶

𝛾 (𝑏) holds, therefore entailing that lfp(𝜆𝑥.𝛾 (𝑎) ∨𝐶 JrK𝑥) ≤𝐶 𝛾 (𝑏), so that, by Galois connection,

𝛼 (lfp(𝜆𝑥 .𝛾 (𝑎) ∨𝐶 JrK𝑥)) ≤𝐴 𝑏. This implies that lfp(𝜆𝑥 ∈ 𝐴.𝑎 ∨𝐴 JrK♯
𝐴
𝑥) = 𝛼 (lfp(𝜆𝑥.𝛾 (𝑎) ∨𝐶 JrK𝑥)),

that is, JrfixK♯
𝐴
𝑎 = 𝛼JrfixK𝛾 (𝑎). □

4 The Program Class of Best Abstract Interpretations
We study the computability properties of the class of programs satisfying the bca property on a

given abstract domain. Fixed 𝐴𝛼,𝛾 ∈ Abs(𝐶), we consider the following two classes of programs:

given 𝑎 ∈ 𝐴, BCA(𝐴, 𝑎) ≜ {p ∈ Reg | bca𝐴 (p, 𝑎)} ; BCA(𝐴) ≜ ⋂
𝑎∈𝐴 BCA(𝐴, 𝑎) .

Firstly, note that by assuming that basic commands include a no-op skip ∈ BCmd, it turns out
that for all 𝑎 ∈ 𝐴, 𝛼JskipK𝛾 (𝑎) = 𝛼𝛾 (𝑎) = 𝑎 = JskipK♯

𝐴
𝑎, i.e., bca𝐴 (skip) holds. As a consequence,

for all 𝑎 ∈ 𝐴 and 𝑛 ≥ 1 we have that skip𝑛 ∈ BCA(𝐴, 𝑎), and, in turn, skip𝑛 ∈ BCA(𝐴). It should be
remarked that the assumption skip ∈ BCmd is not restrictive, since a primitive statement having

the identity function as input/output semantics is included in any reasonable model of computation.

We also assume that Reg is a Turing complete language, and that the domain of values D includes,

when necessary, an encoding of Reg, namely, w.l.o.g., that Reg ⊆ D.

4.1 BCA Is Not Straightforward and Cannot Be Achieved by Compilation
We prove that for any nontrivial abstract domain 𝐴 ∈ Abs(℘re (D)) and abstract value 𝑎 ∈ 𝐴, there

exists a program p𝑎
𝐴
such that bca𝐴 (p𝑎𝐴, 𝑎) does not hold, thus showing that the bca property is

not straightforward. This result extends to the weaker bca property a similar theorem proved in

[Giacobazzi et al. 2015, Theorem 4.5] for the case of the 𝛼-completeness property. First, we need a

preliminary lemma.

Lemma 4.1. Let 𝐴 ∈ Abs(℘re (D)), 𝑆 ∈ ℘re (D), and 𝑎 ∈ 𝐴 ∖ {⊥𝐴}. Then, there exists p ∈ Reg such
that JpK𝛾 (𝑎) = 𝑆 .

Proof. Assume that 𝐴 ∈ Abs(℘re (D)), 𝑆 ∈ ℘re (D), and 𝑎 ∈ 𝐴 ∖ {⊥𝐴}. Then, we have that

∅ ⊆ 𝛾 (⊥𝐴) ⊊ 𝛾 (𝑎), so that 𝛾 (𝑎) ≠ ∅. Hence, there exists 𝑛 ∈ 𝛾 (𝑎), and we can assume, w.l.o.g., up

to an encoding of D into N, that 𝑛 ∈ 𝛾 (𝑎) ∩ N. Consider the program q ≜ (𝑥 ≥ 𝑛; 𝑥 := 𝑥 + 1)fix
.

Since JqK𝛾 (𝑎) = lfp(𝜆𝑋 ∈ ℘(N) . 𝛾 (𝑎) ∪ J𝑥 := 𝑥 + 1KJ𝑥 ≥ 𝑛K𝑋 ) = {𝑥 ∈ N | 𝑥 ≥ 𝑛}, we have

that |JqK𝛾 (𝑎) | = |{𝑥 ∈ N | 𝑥 ≥ 𝑛}| = |D| = |𝜔 |. Thus, there exists a program i ∈ Reg such that

Jq; iK𝛾 (𝑎) = D holds. Because 𝑆 ⊆ D is r.e., there exists s ∈ Reg such that JsKD = 𝑆 . Hence, we have

that: 𝑆 = JsKD = JsK(Jq; iK𝛾 (𝑎)) = Jq; i; sK𝛾 (𝑎) . It is therefore enough to set p ≜ q; i; s. □

Theorem 4.2 (Local BCA is not Straightforward). Let𝐴 ∈ Abs(℘re (D)) and 𝑎 ∈ 𝐴∖ {⊥𝐴}. Then,
BCA(𝐴, 𝑎) = Reg if and only if 𝐴 is trivial.

Proof. One implication is straightforward: if 𝐴 ∈ {idAbs,⊤Abs} then 𝐴 is clearly 𝛼-complete

for all programs and input abstract values, therefore, in both cases, for any p ∈ Reg and 𝑎 ∈ 𝐴,
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bca𝐴 (p, 𝑎) holds. Let 𝑎 ∈ 𝐴 ∖ {⊥𝐴} be such that BCA(𝐴, 𝑎) = Reg. Assume, by contradiction, that

𝐴 is nontrivial. Then, there exist 𝑆, 𝐻 ∈ ℘re (D) such that 𝑆 ⊊ 𝛾𝛼 (𝑆) (as 𝐴 ≠ idAbs) and 𝛾𝛼 (𝐻 ) ⊊ D
(as 𝐴 ≠ ⊤Abs). Let 𝑏 ∈ D ∖ 𝛾𝛼 (𝐻 ) and 𝑐 ∈ 𝛾𝛼 (𝑆) ∖ 𝑆1. Because 𝑆 ⊆ D is r.e., 𝛾 (𝑎) ⊆ D is r.e., and

𝑎 ≠ ⊥𝐴, by Lemma 4.1, there exists p ∈ Reg such that JpK𝛾 (𝑎) = 𝑆 . Let r ≜ p; 𝑥 = 𝑐?; 𝑥 := 𝑏. We

have that:

𝛼JrK𝛾 (𝑎) = 𝛼Jp; 𝑥 = 𝑐?; 𝑥 := 𝑏K𝛾 (𝑎) = 𝛼J𝑥 := 𝑏KJ𝑥 = 𝑐?KJpK𝛾 (𝑎) = [as JpK𝛾 (𝑎) = 𝑆]

𝛼J𝑥 := 𝑏KJ𝑥 = 𝑐?K𝑆 = 𝛼J𝑥 := 𝑏K({𝑐} ∩ 𝑆) = 𝛼J𝑥 := 𝑏K∅ = 𝛼 (∅). [as 𝑐 ∉ 𝑆]

Note that 𝛼 (∅) ≠ 𝛼 ({𝑏}) holds, otherwise we would have {𝑏} ⊆ 𝛾𝛼 ({𝑏}) = 𝛾𝛼 (∅) ⊆ 𝛾𝛼 (𝐻 ), thus
contradicting the hypothesis that 𝑏 ∉ 𝛾𝛼 (𝐻 ). Moreover, 𝛼 (𝑆) = 𝛼JpK𝛾 (𝑎) ≤𝐴 JpK♯

𝐴
𝑎. Hence:

JrK♯
𝐴
𝑎 = Jp; 𝑥 = 𝑐?; 𝑥 := 𝑏K♯

𝐴
𝑎 = J𝑥 = 𝑐?; 𝑥 := 𝑏K♯

𝐴
JpK♯

𝐴
𝑎 ≥𝐴 [as JpK♯

𝐴
𝑎 ≥𝐴 𝛼 (𝑆)]

J𝑥 = 𝑐?; 𝑥 := 𝑏K♯
𝐴
𝛼 (𝑆) ≥𝐴 [by soundness of J𝑥 = 𝑐?; 𝑥 := 𝑏K♯

𝐴
]

𝛼J𝑥 = 𝑐?; 𝑥 := 𝑏K𝛾𝛼 (𝑆) = 𝛼J𝑥 := 𝑏KJ𝑥 = 𝑐?K𝛾𝛼 (𝑆) =
𝛼J𝑥 := 𝑏K({𝑐} ∩ 𝛾𝛼 (𝑆)) = 𝛼J𝑥 := 𝑏K{𝑐} = 𝛼 ({𝑏}) . [as 𝑐 ∈ 𝛾𝛼 (𝑆)]

Since 𝛼 (∅) ⪇𝐴 𝛼 ({𝑏}), we have that 𝛼JrK𝛾 (𝑎) = 𝛼 (∅) ⪇𝐴 𝛼 ({𝑏}) ≤𝐴 JrK♯
𝐴
𝑎, thus proving that

r ∉ BCA(𝐴, 𝑎), which contradicts the assumption BCA(𝐴, 𝑎) = Reg. Hence, 𝐴 must be trivial. □

It is worth remarking that the proof of Theorem 4.2 relies upon the fact that given some 𝑏, 𝑐 ∈ D,
the Boolean test 𝑥 = 𝑐? ∈ Reg, used for defining the statement 𝑥 = 𝑐? ;𝑥 := 𝑏 ∈ Reg, is a partial
function, that is, if J𝑥 = 𝑐?K{𝑠} = ∅ then 𝑥 = 𝑐? does not terminate with input 𝑠 . This might be

counterintuitive, so let us stress that the statement 𝑥 = 𝑐? ;𝑥 := 𝑏 corresponds to the following

while program: if 𝑥 = 𝑐 then 𝑥 := 𝑏 else (while true do skip) .
As an easy consequence of Theorem 4.2, we also obtain the following characterization of the

universal class BCA (this latter result could be also derived as a consequence of Rice’s theorem for

program analysis as given in [Cousot et al. 2018, Theorem 5.3, Lemma 6.5]).

Corollary 4.3 (Global BCA is not Straightforward). BCA(𝐴) = Reg iff 𝐴 is trivial.

Proof. By Theorem 4.2, by observing that BCA(𝐴) = Reg iff for all 𝑎 ∈ 𝐴, BCA(𝐴, 𝑎) = Reg. □

Next, we prove that for any nontrivial abstract domain 𝐴 such that for all programs p and

abstract values 𝑎, 𝑏 ∈ 𝐴, the question JpK♯
𝐴
𝑎 =? 𝑏 is decidable, if we fix 𝑎 ∈ 𝐴 ∖ {⊤𝐴}, there exists

no computable function that compiles p into an equivalent program for the precondition 𝛾 (𝑎) and
which satisfies the bca property on 𝑎.

Theorem4.4 (Impossibility of BCAbyProgramTransform). Let𝐴 ∈ Abs(℘re (D)) be nontrivial
and assume that J·K♯

𝐴
is total recursive. Let 𝑎 ∈ 𝐴∖ {⊤𝐴}. Then, there exists no total recursive program

transform 𝜏 : Reg → Reg such that for any r ∈ Reg, JrK𝛾 (𝑎) = J𝜏 (r)K𝛾 (𝑎) and 𝜏 (r) ∈ BCA(𝐴, 𝑎).

Proof. Assume by contradiction that 𝜏 : Reg → Reg is a total recursive program transform

such that for any r ∈ Reg, JrK𝛾 (𝑎) = J𝜏 (r)K𝛾 (𝑎) and 𝜏 (r) ∈ BCA(𝐴, 𝑎). Let 𝑏 ∈ 𝐴 ∖ {⊤𝐴}, and
consider the set Π𝑏

𝑎 ≜ {p ∈ Reg | 𝛼JpK𝛾 (𝑎) = 𝑏}. Clearly, Π𝑏
𝑎 is extensional, therefore, by

Rice’s theorem, Π𝑏
𝑎 is not recursive being nontrivial: in fact, Π𝑏

𝑎 ≠ Reg because, obviously, by

Lemma 4.1, there exist at least two programs p1 and p2 such that 𝛼Jp1K𝛾 (𝑎) = 𝑏 ≠ ⊤𝐴 = 𝛼Jp2K𝛾 (𝑎),
and Π𝑏

𝑎 ≠ ∅ because 𝑏 ∈ 𝐴, hence 𝛾 (𝑏) ∈ ℘re (D), thus, by Lemma 4.1, there exists q ∈ Reg
such that JqK𝛾 (𝑎) = 𝛾 (𝑏), and, in turn, 𝛼JqK𝛾 (𝑎) = 𝛼𝛾 (𝑏) = 𝑏. For all r ∈ Reg, we have that:

1
Observe that in case of recursive abstract domains, it is decidable whether an element 𝑏 ∈ D is such that 𝑏 ∈ D ∖ 𝛾𝛼 (𝐻 ) ,
but, in general, even for recursive abstract domains, we cannot decide whether 𝑐 ∈ 𝛾𝛼 (𝑆 ) ∖ 𝑆 , unless the set 𝑆 is recursive.
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r ∈ Π𝑏
𝑎 ⇔ 𝛼JrK𝛾 (𝑎) = 𝑏 ⇔ 𝛼J𝜏 (r)K𝛾 (𝑎) = 𝑏 ⇔ J𝜏 (r)K♯

𝐴
𝑎 = 𝑏 . Since J·K♯

𝐴
is a total recursive function,

the question J𝜏 (r)K♯
𝐴
𝑎 =? 𝑏 can be decided, thus making Π𝑏

𝑎 recursive, which is a contradiction. □

4.2 Abstract Program Equivalence Is Not Extensional
Similarly to concrete semantics, abstract semantics merges programs into equivalence classes. We

define the following concrete and abstract equivalences between programs in Reg as induced, resp.,

by J·K and J·K♯
𝐴
: p ∼ q ⇔ JpK = JqK and p ∼𝐴 q ⇔ JpK♯

𝐴
= JqK♯

𝐴
.

We prove that there exists a compiler that preserves the concrete semantics but alters the abstract

one, and, in particular, the result of this compilation does not satisfy the bca property. A similar

result was given in [Bruni et al. 2020, Theorem 31] for the 𝛼-completeness property.

Lemma 4.5. Let 𝐴 ∈ Abs(℘rec (D)) be a recursive abstract domain and 𝑎 ∈ 𝐴 such that there exists
𝑆 ∈ ℘rec (D) for which 𝛼 (𝑆) ≤𝐴 𝑎 and 𝑆 ⊊ 𝛾𝛼 (𝑆). Then, there exists a compiler 𝜏 : Reg → Reg such
that for any r ∈ Reg with JrK♯

𝐴
𝑎 ≠ ⊤𝐴: (i) r ∼ 𝜏 (r), (ii) r ≁𝐴 𝜏 (r), (iii) 𝜏 (r) ∉ BCA(𝐴, 𝑎).

Proof. Let 𝐴 ∈ Abs(℘rec (D)) and 𝑎 ∈ 𝐴 be such that there exists 𝑆 ∈ ℘rec (D) for which
𝛼 (𝑆) ≤𝐴 𝑎 and 𝑆 ⊊ 𝛾𝛼 (𝑆). Let r ∈ Reg be such that JrK♯

𝐴
𝑎 ≠ ⊤𝐴. By monotonicity of JrK♯

𝐴
, we

have that JrK♯
𝐴
𝛼 (𝑆) ≤𝐴 JrK♯

𝐴
⊤𝐴 ⪇𝐴 ⊤𝐴, so that, since 𝛾 is injective, 𝛾JrK♯

𝐴
𝛼 (𝑆) ≠ 𝛾 (⊤𝐴) = D.

Since 𝛾JrK♯
𝐴
𝛼 (𝑆) ∈ ℘rec (D) we can find algorithmically an element 𝑏 ∈ D ∖ 𝛾 (JrK♯

𝐴
𝛼 (𝑆)). Since

𝑆 ∈ ℘rec (D), there exist two programs q𝑆 , q̄𝑆 ∈ Reg such that, for any 𝑋 ∈ ℘rec (D), Jq𝑆K𝑋 = 𝑋 ∩ 𝑆

and Jq̄𝑆K𝑋 = 𝑋 ∩ ¬𝑆 . The program transform 𝜏 : Reg → Reg is defined as follows:

𝜏 (r) ≜ (q𝑆 ; ((q̄𝑆 ; 𝑥 := 𝑏) ⊕ (q𝑆 ; r))) ⊕ (q̄𝑆 ; r) .
It is clear that J𝜏 (r)K = J(q𝑆 ; r) ⊕ (q̄𝑆 ; r)K = JrK and 𝜏 (r) ∉ BCA(𝐴, 𝑎). It turns out that:

J𝜏 (r)K♯
𝐴
𝛼 (𝑆) =

J(q𝑆 ; ((q̄𝑆 ; 𝑥 := 𝑏) ⊕ (q𝑆 ; r))) ⊕ (q̄𝑆 ; r)K♯
𝐴
𝛼 (𝑆) =

Jq𝑆 ; ((q̄𝑆 ; 𝑥 := 𝑏) ⊕ (q𝑆 ; r))K♯
𝐴
𝛼 (𝑆) ∨𝐴 Jq̄𝑆 ; rK♯

𝐴
𝛼 (𝑆) =

Jq𝑆 ; (q̄𝑆 ; 𝑥 := 𝑏)K♯
𝐴
𝛼 (𝑆) ∨𝐴 Jq𝑆 ; q𝑆 ; rK♯

𝐴
𝛼 (𝑆) ∨𝐴 Jq̄𝑆 ; rK♯

𝐴
𝛼 (𝑆) =

Jq𝑆 ; (q̄𝑆 ; 𝑥 := 𝑏)K♯
𝐴
𝛼 (𝑆) ∨𝐴 Jq𝑆 ; rK♯

𝐴
𝛼 (𝑆) ∨𝐴 Jq̄𝑆 ; rK♯

𝐴
𝛼 (𝑆) ≥𝐴

[as Jq𝑆K
♯

𝐴
𝛼 (𝑆) ≥𝐴 𝛼 (𝑆), Jq̄𝑆K

♯

𝐴
𝛼 (𝑆) ≥𝐴 𝛼 (∅)]

Jq𝑆 ; (q̄𝑆 ; 𝑥 := 𝑏)K♯
𝐴
𝛼 (𝑆) ∨𝐴 JrK♯

𝐴
𝛼 (𝑆) =

J𝑥 := 𝑏K♯
𝐴
Jq̄𝑆K

♯

𝐴
Jq𝑆K

♯

𝐴
𝛼 (𝑆) ∨𝐴 JrK♯

𝐴
𝛼 (𝑆) ≥𝐴 [as Jq𝑆K

♯

𝐴
𝛼 (𝑆) ≥𝐴 𝛼 (𝑆)]

J𝑥 := 𝑏K♯
𝐴
Jq̄𝑆K

♯

𝐴
𝛼 (𝑆) ∨𝐴 JrK♯

𝐴
𝛼 (𝑆) ≥𝐴 [as Jq𝑆K

♯

𝐴
¤≥𝐴 𝛼Jq̄𝑆K𝛾]

J𝑥 := 𝑏K♯
𝐴
𝛼Jq̄𝑆K𝛾𝛼 (𝑆) ∨𝐴 JrK♯

𝐴
𝛼 (𝑆) ≥𝐴 [as J𝑥 := 𝑏K♯

𝐴
¤≥𝐴 𝛼J𝑥 := 𝑏K𝛾]

𝛼J𝑥 := 𝑏K𝛾𝛼Jq̄𝑆K𝛾𝛼 (𝑆) ∨𝐴 JrK♯
𝐴
𝛼 (𝑆) .

Since 𝑆 ⊊ 𝛾𝛼 (𝑆), we have that Jq̄𝑆K𝛾𝛼 (𝑆) ≠ ∅. Thus, 𝛼J𝑥 := 𝑏K𝛾𝛼Jq̄𝑆K𝛾𝛼 (𝑆) ∨𝐴 JrK♯
𝐴
𝛼 (𝑆) ⪈𝐴

JrK♯
𝐴
𝛼 (𝑆), otherwise we would have that 𝛼J𝑥 := 𝑏K𝛾𝛼Jq̄𝑆K𝛾𝛼 (𝑆) ≤𝐴 JrK♯

𝐴
𝛼 (𝑆), which would entail

that 𝑏 ∈ 𝛾𝛼J𝑥 := 𝑏K𝛾𝛼Jq̄𝑆K𝛾𝛼 (𝑆) ⊆ 𝛾JrK♯
𝐴
𝛼 (𝑆), which would be a contradiction to the fact that

𝑏 ∈ D ∖ 𝛾 (JrK♯
𝐴
𝛼 (𝑆)). We have therefore shown that JrK♯

𝐴
𝛼 (𝑆) ≠ J𝜏 (r)K♯

𝐴
𝛼 (𝑆), i.e., 𝜏 (r) ≁𝐴 r. □

We call the inductive abstract semantics J·K♯
𝐴
of definition (2) non-straightforward when there

exists a program p ∈ Reg such that JpK♯
𝐴
⊤𝐴 ≠ ⊤𝐴. Note that a nontrivial abstract domain𝐴 does not

necessarily induce a non-straightforward abstract semantics J·K♯
𝐴
. It is enough to consider a Turing

complete language Reg with basic commands BCmd = {𝑥 ≥ 0?, skip, 𝑥 := 𝑥 + 1, 𝑥 := 0}, and an

abstract domain CP≠0 defined as the constant propagation abstract domain [Wegman and Zadeck
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1991] without the value 0 to make the corresponding abstract semantics J·K♯
CP≠0

straightforward. As

a consequence of Lemma 4.5, the only non-straightforward abstract semantics defined on recursive

abstract domains inducing an extensional program equivalence is the bca.

Corollary 4.6 (Abstract Program Equivalence is not Extensional). Let 𝐴 ∈ Abs(℘rec (D)) and
J·K♯

𝐴
be non-straightforward. Then, ∼𝐴 is extensional iff BCA(𝐴) = Reg iff 𝐴 = idAbs.

Proof. If 𝐴 = idAbs then ∼id
Abs
= ∼ . Let 𝐴 be nontrivial and J·K♯

𝐴
be non-straightforward.

Therefore, there exists r ∈ Reg such that JrK♯
𝐴
⊤𝐴 ≠ ⊤𝐴. By Lemma 4.5, r ∼ 𝜏 (r) and 𝜏 (r) ≁𝐴 r. □

4.3 BCA Is Not Recursive
We conclude our study by proving that BCA(𝐴, 𝑎) and BCA(𝐴) are, in general, nonrecursive sets

of programs, so that the questions “bca𝐴 (p, 𝑎)?” and “bca𝐴 (p)?” are undecidable. Let us remark

that the non-extensionality of the abstract equivalence ∼𝐴, given by Corollary 4.6, prevents the

application of Rice’s theorem for proving the nonrecursivity of BCA(𝐴). On the other hand, similarly

to the proof of Rice’s theorem, this result can be anyway established through a diagonal argument

obtained by applying Kleene’s fixpoint theorem, both for BCA(𝐴) and BCA(𝐴, 𝑎). We assume that

the abstract elements 𝑎 ∈ 𝐴, being representations of recursive enumerable sets 𝛾 (𝑎) ∈ ℘re (D),
have an encoding in Reg, so that for each 𝑎 ∈ 𝐴 we can always construct a program p𝑎 ∈ Reg such

that 𝛾 (𝑎) = rng(Jp𝑎K).
Theorem 4.7 (Local BCA is not Recursive). Let 𝐴 ∈ Abs(℘rec (D)) be nontrivial, 𝑎 ∈ 𝐴 ∖ {⊥𝐴},
and J·K♯

𝐴
be a total recursive function. Then, BCA(𝐴, 𝑎) is not recursive.

Proof. Let 𝐴 ∈ Abs(℘rec (D)) be a nontrivial recursive abstract domain. Because the abstract

semantics J·K♯
𝐴

: Reg ×𝐴 → 𝐴 is a total recursive function and Reg is Turing complete, there exists

a program u ∈ Reg such that JuK : Reg×D → D is a binary total recursive function such that for

all p ∈ Reg and 𝑎 ∈ 𝐴, 𝛾 (JpK♯
𝐴
𝑎) = JuK(p, 𝛾 (𝑎)). By s-m-n theorem, there exists a total recursive

function ♯ : Reg× Reg → Reg such that for all p ∈ Reg and 𝑎 ∈ 𝐴, 𝛾 (JpK♯
𝐴
𝑎) = J♯(u, p)K𝛾 (𝑎) holds,

thus entailing that JpK♯
𝐴
𝑎 = 𝛼𝛾 (JpK♯

𝐴
𝑎) = 𝛼J♯(u, p)K𝛾 (𝑎). Let 𝑎 ∈ 𝐴 such that 𝑎 ≠ ⊥𝐴. Because

𝑎 ≠ ⊥𝐴, we have that 𝛾 (𝑎) ≠ ∅. Moreover, 𝛾 (𝑎) ∈ ℘rec (D), hence, by Lemma 4.1, there exists a

program c𝑎 ∈ Reg such that 𝛼Jc𝑎K𝛾 (𝑎) = 𝑎. Since 𝐴 is nontrivial there exists a program c≠𝑎 ∈ Reg
such that 𝛼Jc≠𝑎K𝛾 (𝑎) ≠ 𝑎.

Assume, by contradiction, that BCA(𝐴, 𝑎) is recursive, so that we can define the following function

h : Reg → Reg: for all p ∈ Reg,

h(p) ≜


c𝑎 if p ∈ BCA(𝐴, 𝑎) and JpK♯
𝐴
𝑎 ≠ 𝑎

c≠𝑎 if p ∈ BCA(𝐴, 𝑎) and JpK♯
𝐴
𝑎 = 𝑎

♯(u, p) if p ∉ BCA(𝐴, 𝑎)
(5)

Since BCA(𝐴, 𝑎) is recursive and J·K♯
𝐴
is a total recursive function, we have that JpK♯

𝐴
𝑎 =? 𝑎 is a

recursive predicate on Reg, so that h turns out to be a total recursive function. By Kleene’s fixpoint

theorem applied to h, there exists e ∈ Reg such that JeK = Jh(e)K.
Assume that e ∈ BCA(𝐴, 𝑎). We distinguish two cases.

(1) If JeK♯
𝐴
𝑎 ≠ 𝑎 then we have that:

JeK♯
𝐴
𝑎 = [as e ∈ BCA(𝐴, 𝑎)]

𝛼JeK𝛾 (𝑎) = [as e ∼ h(e)]
𝛼Jh(e)K𝛾 (𝑎) = [by definition (5) of h]

𝛼Jc𝑎K𝛾 (𝑎) = 𝑎 [as shown above]
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Hence, this contradicts the hypothesis that JeK♯
𝐴
𝑎 ≠ 𝑎.

(2) If JeK♯
𝐴
𝑎 = 𝑎 then:

𝑎 = [by assumption]

JeK♯
𝐴
𝑎 = [as e ∈ BCA(𝐴, 𝑎)]

𝛼JeK𝛾 (𝑎) = [as e ∼ h(e)]
𝛼Jh(e)K𝛾 (𝑎) = [by definition (5) of h]

𝛼Jc≠𝑎K𝛾 (𝑎) ≠ 𝑎

which is again a contradiction. To conclude, let us assume that e ∉ BCA(𝐴, 𝑎). Then, we have that:

𝛼JeK𝛾 (𝑎) = [as e ∼ h(e)]
𝛼Jh(e)K𝛾 (𝑎) = [by definition (5) of h]

𝛼J♯(u, e)K𝛾 (𝑎) = JeK♯
𝐴
𝑎 [by definition of ♯]

hence proving that 𝑒 ∈ BCA(𝐴, 𝑎), which is a contradiction. □

As a consequence, we also obtain the nonrecursivity of BCA(𝐴).
Corollary 4.8 (Global BCA is not Recursive). Let 𝐴 ∈ Abs(℘rec (D)) be nontrivial and J·K♯

𝐴
be a

total recursive function. Then, BCA(𝐴) is not recursive.

Proof. The proof follows immediately by Theorem 4.7 because the predicate BCA(𝐴, 𝑎) is not
recursive and, by definition, p ∈ BCA(𝐴) ⇔ ∀𝑎 ∈ 𝐴. p ∈ BCA(𝐴, 𝑎). □

5 Impossibility of Minimal Abstraction Refinement or Simplification to Achieve Bca
We proved in Theorem 4.4 that, in general, it is impossible to compile a program into an equivalent

one, even for a specific abstract precondition, that satisfies the bca property on a given abstraction

𝐴. It is, therefore, natural to consider whether the bca property can be achieved by modifying the

abstract domain 𝐴. Given a program r and an abstract domain 𝐴, we address the following two

basic questions that arise for the bca property:

(Q1) does there exist the least domain refinement 𝐴r of 𝐴 such that r satisfies the local/global bca
property on 𝐴r?

(Q2) does there exist the greatest domain abstraction 𝐴a of 𝐴 such that r satisfies the local/global
bca property on 𝐴a?

Least refinements and greatest abstractions of domains in abstract interpretation have been studied

within a general framework in [Filé et al. 1996; Giacobazzi and Ranzato 1997]. Following [Giacobazzi

and Ranzato 1997], given a property P of abstractions of a concrete domain𝐶 , namely P ⊆ Abs(𝐶),
the core of an abstract domain 𝐴 ∈ Abs(𝐶), when it exists, is the most concrete abstraction of 𝐴 in

the complete lattice ⟨Abs(𝐶), ⊑⟩ that satisfies P. Dually, the shell of 𝐴, when it exists, is the most

abstract refinement of 𝐴 that satisfies P. Notable examples include the completeness core and shell

investigated by Giacobazzi et al. [2000], the disjunctive shell (a.k.a. disjunctive completion) [Cousot

and Cousot 1979; Filé and Ranzato 1999; Giacobazzi and Ranzato 1996], and the condensing shell

[Giacobazzi et al. 2005] to make goal-driven and goal-independent analyses agree.

In the following, we provide negative answers to both questions (Q1) and (Q2) above, thus

showing the impossibility of attaining the (global or local) bca property throughminimal abstraction

refinements or simplifications.
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Z≤2

ZSign
s1

Z≥−2

ZSign
s2

Z[−2,2]

Z≤2 Z≥−2

ZSign
s

Fig. 2. Abstract Domains for Sign Analysis.

5.1 Global and Local bca Shells Do Not Exist
Consider the program p ≜ (𝑧 := 2; 𝑧 := 𝑧 + 1); 𝑧 := 𝑧 − 1 already defined in (3) of Example 3.3 and

its Sign analysis JpK♯SignZ = Z≥0. We observed in Example 3.3 that the analysis of 𝑧 := 2; 𝑧 := 𝑧 + 1

is as precise as possible, i.e., J𝑧 := 2; 𝑧 := 𝑧 + 1K♯SignZ = Z>0, whereas the bca property is lost when

composing with the analysis of the third assignment as J𝑧 := 𝑧 − 1K♯SignZ>0 = Z≥0. Hence, p does

not satisfy the gbca property on Sign, and the lbca property on any abstract input in Sign different

from ∅. We observe that Sign
r1

≜ Sign∪{Z>1,Z>2} and Sign
r2

≜ Sign∪{Z=2,Z=3} are two abstract
domains that refine Sign and such that the analysis of p on both of them satisfies the gbca property.

To check this, it is enough to consider the input abstract value Z ∈ Sign:

JpK♯Sign
r
1

Z = J𝑧 := 𝑧 − 1K♯Sign
r
1

J𝑧 := 𝑧 + 1K♯Sign
r
1

J𝑧 := 2K♯Sign
r
1

Z

= J𝑧 := 𝑧 − 1K♯Sign
r
1

J𝑧 := 𝑧 + 1K♯Sign
r
1

Z>1

= J𝑧 := 𝑧 − 1K♯Sign
r
1

Z>2 = Z>1 = 𝛼Sign
r
1

JpK𝛾Sign
r
1

(Z) ,

JpK♯Sign
r
2

Z = J𝑧 := 𝑧 − 1K♯Sign
r
2

J𝑧 := 𝑧 + 1K♯Sign
r
2

J𝑧 := 2K♯Sign
r
2

Z

= J𝑧 := 𝑧 − 1K♯Sign
r
2

J𝑧 := 𝑧 + 1K♯Sign
r
2

Z=2

= J𝑧 := 𝑧 − 1K♯Sign
r
2

Z=3 = Z=2 = 𝛼Sign
r
2

JpK𝛾Sign
r
2

(Z) .

However, it turns out that the lub inAbs(℘(Z)) of Sign
r1

and Sign
r2

is Sign, i.e. Sign
r1

⊔Sign
r2

= Sign,
and this entails that the least domain refinement Sign

r
of Sign such that p satisfies the gbca property

on Sign
r
does not exist, because:

Sign = Sign
r1

⊔ Sign
r2

⊑ ⊔{𝐴 ∈ Abs(℘(Z)) | 𝐴 ⊑ Sign, bca𝐴 (p)} ⊑ Sign .

This same argument also shows that the least domain refinement Sign
r
of Sign such that bcaSign

r

(p,Z)
holds, does not exist. We have thus shown that the question (Q1), in general, has a negative answer.

5.2 Global and Local bca Cores Do Not Exist
Consider the program p ≜ 𝑥 := −𝑥/2; 𝑥 := 𝑥 + 1 , where 𝑛/𝑚 denotes integer division (i.e., the

fractional part is discarded), and its sign analysis on the domain Sign
s
depicted in Figure 2, whose

abstract values clearly define the corresponding abstraction map 𝛼Sign
s

:

JpK♯Sign
s

Z[−2,2] = J𝑥 := 𝑥 + 1K♯Sign
s

J𝑥 := −𝑥/2K♯Sign
s

Z[−2,2] = J𝑥 := 𝑥 + 1K♯Sign
s

Z[−2,2] = Z≥−2 .

This is not the best analysis on Sign
s
, because:

𝛼Sign
s

J𝑥 := 𝑥 + 1KJ𝑥 := −𝑥/2K𝛾Sign
s

(Z[−2,2]) = 𝛼Sign
s

J𝑥 := 𝑥 + 1K{−1, 0, 1}
= 𝛼Sign

s

({0, 1, 2}) = Z[−2,2] .
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On the other hand, we observe that Sign
s1

and Sign
s2

in Figure 2, which are further abstractions

of Sign
s
, both satisfy the gbca property because:

JpK♯Sign
s
1

Z≤2 = J𝑥 := 𝑥 + 1K♯Sign
s
1

J𝑥 := −𝑥/2K♯Sign
s
1

Z≤2

= J𝑥 := 𝑥 + 1K♯Sign
s
1

Z = Z = 𝛼Sign
s
1

JpK𝛾Sign
s
1

(Z≤2) ,

JpK♯Sign
s
2

Z≥−2 = J𝑥 := 𝑥 + 1K♯Sign
s
2

J𝑥 := −𝑥/2K♯Sign
s
2

Z≥−2

= J𝑥 := 𝑥 + 1K♯Sign
s
2

Z = Z = 𝛼Sign
s
2

JpK𝛾Sign
s
2

(Z≥−2) .

Moreover, for the abstract value Z, we can easily check that JpK♯Sign
s
1

Z = Z = 𝛼Sign
s
1

JpK𝛾Sign
s
1

(Z),
and JpK♯Sign

s
2

Z = Z = 𝛼Sign
s
2

JpK𝛾Sign
s
2

(Z).
We observe that Sign

s
= Sign

s1

⊓ Sign
s2

holds, where ⊓ is the glb in Abs(℘(Z)). Hence, this
implies that the least domain abstraction Sign

a
of Sign

s
such that p satisfies the global bca property

on Sign
a
does not exist, as

Sign
s
⊑ ⊓{𝐴 ∈ Abs(℘(Z)) | Sign

s
⊑ 𝐴, bca𝐴 (p)} ⊑ Sign

s1

⊓ Sign
s2

= Sign
s
.

This example therefore shows that the question (Q2) on the existence of the core for the gbca

property has, in general, a negative answer.

For the local bca property, the question (Q2) needs to be clarified. In fact, if a given domain 𝐴 is

not lbca on some abstract input 𝑎 ∈ 𝐴, and we consider a further abstraction𝐴′ ⊒ 𝐴, it may happen

that 𝛾 (𝑎) ∉ 𝛾 (𝐴′), so that we cannot ask whether 𝐴′
satisfies the local bca property on 𝑎. Thus, the

question needs to be reformulated by leveraging concrete values as follows: A program r ∈ Reg
is defined to satisfy the lbca property on some concrete value 𝑐 ∈ 𝐶 for the abstraction 𝐴 when

JrK♯
𝐴
𝛼𝐴 (𝑐) = 𝛼𝐴JrK𝛾𝐴𝛼𝐴 (𝑐) holds. Of course, this definition includes the case of Definition 3.1 (i), as

any abstract value is the abstraction of some concrete value, i.e., for all 𝑎 ∈ 𝐴 there exists 𝑐𝑎 ∈ 𝐶

such that 𝛼𝐴 (𝑐𝑎) = 𝑎. Then, according to this more general definition of lbca, the example above

shows that for p, the lbca core of Sign
s
for the concrete value {−2,−1, 0, 1, 2} ∈ ℘(Z) does not exist.

5.3 Bca vs Completeness
It is known that global 𝛼- and 𝛾-complete shells and cores exist with very mild hypotheses [Gi-

acobazzi et al. 1998, 2000; Ranzato 2013]. Thus, in this respect, global completeness is in sharp

contrast w.r.t. the global bca property. On the other hand, local 𝛼-complete shells do not exist in

general, and this led to investigating a notion of pointed locally 𝛼-complete shells, where the domain

refinement of an abstraction 𝐴 consists in adding to 𝐴 the greatest (i.e., less precise) concrete

value that makes the refined abstraction locally 𝛼-complete on some given input [Bruni et al. 2022,

Section 4]. The lack of existence of local 𝛼-complete shells is therefore in accordance with the

negative answer to (Q1) for the local bca property shown above in Section 5.1. On the other hand, in

contrast to the negative answer to (Q2) for global and local bca cores, for the sake of completeness,

we show that locally 𝛼-complete cores unconditionally exist.

Lemma 5.1 (Existence of Locally 𝛼-Complete Cores). Let 𝑓 : 𝐶 → 𝐶 be a monotone function,
{𝐴𝑖 ∈ Abs(𝐶) | 𝑖 ∈ 𝐼 } be a family of abstract domains, and 𝑐 ∈ 𝐶 . If, for all 𝑖 ∈ 𝐼 , 𝐴𝑖 is locally
𝛼-complete for 𝑓 on 𝑐 then ⊓𝑖∈𝐼𝐴𝑖 is locally 𝛼-complete for 𝑓 on 𝑐 .
As a consequence, locally 𝛼-complete cores always exist, i.e., given 𝐴 ∈ Abs(𝐶), the abstract domain
⊓{𝐴a ∈ Abs(𝐶) | 𝐴a ⊑ 𝐴, 𝐴a locally 𝛼-complete for 𝑓 on 𝑐} is locally 𝛼-complete for 𝑓 on 𝑐 .

Proof. Let 𝜇𝑖 ≜ 𝛾𝐴𝑖
◦𝛼𝐴𝑖

be the upper closure operator on𝐶 induced by the abstraction𝐴𝑖 , so that

the local 𝛼-completeness equation for 𝐴𝑖 boils down to 𝜇𝑖 𝑓 𝜇𝑖 (𝑐) = 𝜇𝑖 𝑓 (𝑐). We observe that for all

𝑗 ∈ 𝐼 , (⊓𝑖𝜇𝑖 ) 𝑓 (⊓𝑖𝜇𝑖 ) (𝑐) = (⊓𝑖𝜇𝑖 ) 𝑓 (∧𝑖𝜇𝑖 (𝑐)) ≤ (⊓𝑖𝜇𝑖 ) 𝑓 (𝜇 𝑗 (𝑐)) = ∧𝑖𝜇𝑖 (𝑓 (𝜇 𝑗 (𝑐))) ≤ 𝜇 𝑗 (𝑓 (𝜇 𝑗 (𝑐))) =
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𝜇 𝑗 (𝑓 (𝑐)) . Thus, it turns out that (⊓𝑖𝜇𝑖 ) 𝑓 (⊓𝑖𝜇𝑖 ) (𝑐) ≤ ∧𝑖∈𝐼 𝜇𝑖 (𝑓 (𝑐)) = (⊓𝑖𝜇𝑖 ) 𝑓 (𝑐), and, in turn, we

have that (⊓𝑖𝜇𝑖 ) 𝑓 (⊓𝑖𝜇𝑖 ) (𝑐) = (⊓𝑖𝜇𝑖 ) 𝑓 (𝑐).
Therefore, ⊓{𝐴a ∈ Abs(𝐶) | 𝐴 ⊑ 𝐴a, 𝐴a locally 𝛼-complete for 𝑓 on 𝑐} is an abstraction which is

locally 𝛼-complete for 𝑓 on 𝑐 , namely, it is the locally 𝛼-complete core of 𝐴 for 𝑓 on 𝑐 . □

6 Bca Triples
Given a program r and an abstraction𝐴, we formalize the intuitive idea of a logical triple [𝑎]𝐴 r [𝑏]𝐴
where the precondition is any abstract value 𝑎 ∈ 𝐴 and the postcondition 𝑏 ∈ 𝐴 is the inductive

abstract semantics of r in 𝐴 and this is the best possible one, i.e., 𝑏 coincides with the best correct

approximation 𝛼𝐴JrK𝛾𝐴 (𝑎).
Definition 6.1 (Validity of bca Triples). Let 𝐴𝛼,𝛾 ∈ Abs(𝐶) be any abstract domain. A bca
triple is [𝑎]𝐴 r [𝑏]𝐴 where r ∈ Reg and 𝑎, 𝑏 ∈ 𝐴. A bca triple [𝑎]𝐴 r [𝑏]𝐴 is valid, also denoted by

|= [𝑎]𝐴 r [𝑏]𝐴, when:
(i) JrK♯

𝐴
𝑎 = 𝑏, i.e., 𝑏 is the inductive analysis of r in 𝐴 on input 𝑎;

(ii) 𝛼JrK𝛾 (𝑎) = 𝑏, i.e., 𝑏 is the bca of r in 𝐴 on input 𝛾 (𝑎). □

Let us remark that, given 𝑎 ∈ 𝐴, there exists 𝑏 ∈ 𝐴 such that |= [𝑎]𝐴 r [𝑏]𝐴 iff r ∈ BCA(𝐴, 𝑎), that
is, the inductive analysis of r in 𝐴 is the best possible one.

Remark 6.2 (Naïve bca Triples are not Valid). Firstly, it is worth observing that, in general, for

all 𝑎 ∈ 𝐴, the naïve bca triples having as postcondition the bca or the analysis of the program r, in
general, are not valid, namely,

(1) [𝑎]𝐴 r [𝛼JrK𝛾 (𝑎)]𝐴 and (2) [𝑎]𝐴 r [JrK♯
𝐴
𝑎]𝐴 are not, in general, valid triples.

In fact, by choosing p ≜ 𝑥 := 𝑥 + 1; 𝑥 := 𝑥 − 1, 𝐴 = Sign, and 𝑎 = Z>0 ∈ 𝐴, we can show both (1)

and (2) because JpK♯Sign (Z>0) = Z≥0 ≠ Z>0 = 𝛼SignJpK𝛾Sign (Z>0), so that both [Z>0]Sign p [Z>0]Sign

and [Z>0]Sign p [Z≥0]Sign are not valid triples. □

Remark 6.3 (Local 𝛼-Completeness and bca Validity). Secondly, we note that local 𝛼-complete-

ness is a sufficient condition to have a valid bca triple, i.e., if JrK♯
𝐴
𝛼 (𝑐) = 𝛼JrK𝑐 holds, i.e. r is locally

𝛼-complete in 𝐴 on 𝑐 ∈ 𝐶 , then [𝛼 (𝑐)]𝐴 r [JrK♯
𝐴
𝛼 (𝑐)]𝐴 is a valid bca triple. In fact, we have that:

JrK♯
𝐴
𝛼 (𝑐) = [by local 𝛼-completeness]

𝛼JrK𝑐 ≤ [as 𝑐 ≤ 𝛾𝛼 (𝑐) and by monotonicity of 𝛼JrK]
𝛼JrK𝛾𝛼 (𝑐) ≤ JrK♯

𝐴
𝛼 (𝑐) [by soundness of JrK♯

𝐴
]

so that JrK♯
𝐴
𝛼 (𝑐) = 𝛼JrK𝛾𝛼 (𝑐) holds, that is, [𝛼 (𝑐)]𝐴 r [JrK♯

𝐴
𝛼 (𝑐)]𝐴 is valid.

The vice versa does not hold, namely, it may happen that [𝛼 (𝑐)]𝐴 r [JrK♯
𝐴
𝛼 (𝑐)]𝐴 is a valid bca

triple whereas JrK♯
𝐴
𝛼 (𝑐) ≠ 𝛼JrK𝑐 . An example showing this can be given by considering the program

p ≜ 𝑥 := 𝑥+2; 𝑥 := 𝑥−1, the Sign abstract domain, and 𝑐 = {−1, 0} ∈ ℘(Z) such that 𝛼Sign (𝑐) = Z≤0.

In fact, we have that:

JpK♯Sign𝛼Sign (𝑐) = J𝑥 := 𝑥 − 1K♯SignJ𝑥 := 𝑥 + 2K♯SignZ≤0

= J𝑥 := 𝑥 − 1K♯SignZ = Z ≠ Z≥0 = 𝛼Sign ({0, 1}) = 𝛼SignJpK𝑐 ,

namely, local𝛼-completeness does not hold. On the other hand, the bca triple [Z≤0]𝐴 p [JpK♯
𝐴
Z≤0]𝐴 ≡

[Z≤0]𝐴 p [Z]𝐴 is valid because JpK♯
𝐴
Z≤0 = Z = 𝛼Sign (Z≤1) = 𝛼SignJpK𝛾Sign (Z≤0). □

Remark 6.4 (On the Weakest Abstract Precondition). Given a program r and an abstract

postcondition 𝑏 ∈ 𝐴, an expected question to settle is about the existence of the weakest abstract
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⊢bca [𝑎]𝐴 r [𝛼JrK𝛾 (𝑎)]𝐴
(basic) ⊢bca [𝑎]𝐴 r1 [𝑏1]𝐴 ⊢bca [𝑎]𝐴 r2 [𝑏2]𝐴

⊢bca [𝑎]𝐴 r1 ⊕ r2 [𝑏1 ∨𝐴 𝑏2]𝐴
(choice)

⊢bca [𝑎]𝐴 r1 [𝑐]𝐴 ⊢bca [𝑐]𝐴 r2 [𝑏]𝐴 𝑏 = 𝛼Jr2KJr1K𝛾 (𝑎)
⊢bca [𝑎]𝐴 r1; r2 [𝑏]𝐴

(seq)

⊢bca [𝑎]𝐴 r [𝑏]𝐴 𝑏 ≤𝐴 𝑎

⊢bca [𝑎]𝐴 rfix [𝑎]𝐴
(abs-inv) ∃𝑛 ≥ 1. ⊢bca [𝑎]𝐴 r𝑛 [𝑏]𝐴 ⊢bca [𝑎 ∨𝐴 𝑏]𝐴 rfix [𝑎 ∨𝐴 𝑏]𝐴

⊢bca [𝑎]𝐴 rfix [𝑎 ∨𝐴 𝑏]𝐴
(rec)

⊢bca [𝑎′]𝐴 r [𝑏]𝐴 𝑎′ ≤𝐴 𝑎 JrK♯
𝐴
𝑎 ≤𝐴 𝑏

⊢bca [𝑎]𝐴 r [𝑏]𝐴
(weakenpre)

Fig. 3. The Program Logic ⊢bca.

input 𝑎 ∈ 𝐴 such that [𝑎]𝐴 r [𝑏]𝐴 is a valid bca triple. By defining

wpr (𝑏) ≜ ∨𝐴{𝑎 ∈ 𝐴 | |= [𝑎]𝐴 r [𝑏]𝐴} (6)

this boils down to the validity of the triple [wpr (𝑏)]𝐴 r [𝑏]𝐴. The answer can be easily shown

to be negative. In fact, it is enough to consider the interval 𝑏 = [1, 1] ∈ Int for the assignment

𝑥 := 𝑥 ∗𝑥 . In this case, both triples [[1, 1]] Int 𝑥 := 𝑥 ∗𝑥 [[1, 1]] Int and [[−1,−1]] Int 𝑥 := 𝑥 ∗𝑥 [[1, 1]] Int

are valid, while for their interval lub [−1, 1] = [−1,−1] ∨Int [1, 1], it turns out that the bca triple
[[−1, 1]] Int 𝑥 := 𝑥 ∗ 𝑥 [[1, 1]] Int is not valid.

On the other hand, if the abstract domain 𝐴 is disjunctive and the concrete semantics of basic

commands is assumed to be additive—as it is the case for the while programs in Section 2.4—then

the weakest abstract precondition wpr (𝑏) exists. This is a consequence of Lemma 2.3:

𝛼JrK𝛾 (wpr (𝑏)) = [by additivity of 𝛾 , 𝛼 , and, by Lemma 2.3, of JrK]
∨𝐴{𝛼JrK𝛾 (𝑎) ∈ 𝐴 | |= [𝑎]𝐴 r [𝑏]𝐴} = [as |= [𝑎]𝐴 r [𝑏]𝐴]

𝑏 = [as |= [𝑎]𝐴 r [𝑏]𝐴]
∨𝐴{JrK♯

𝐴
𝑎 ∈ 𝐴 | |= [𝑎]𝐴 r [𝑏]𝐴} = [by Lemma 2.3, JrK♯

𝐴
is additive]

JrK♯
𝐴
(∨𝐴{𝑎 ∈ 𝐴 | |= [𝑎]𝐴 r [𝑏]𝐴}) = [by definition (6)]

JrK♯
𝐴

wpr (𝑏) .

For example, this is the case of the Sign abstraction in Figure 1, which is disjunctive. □

7 A Program Logic of Best Correct Approximations
Consider a given abstract domain 𝐴 and assume that the abstract interpretation of all the basic

commands is their best correct approximations—otherwise, it would not make sense to prove

inductively the bca property. We have shown in Section 3 that bcas are preserved by the nondeter-

ministic choice (cf. Lemma 3.2), whereas sequential compositions, Kleene star and fixpoint do not

preserve the bca (cf. Examples 3.3 and 3.5). Thus, if we aim at designing a proof system for proving

bca triples [𝑎]𝐴 r [𝑏]𝐴, then the crucial rules are concerned with sequential compositions, Kleene

star and fixpoint commands, and these rules have to single out specific proof principles for them.

Moreover, this proof system may include a consequence-like rule for the precondition 𝑎 only, since

the abstract postcondition 𝑏 obviously cannot be altered (neither weakened nor strengthened).
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Let us remark that since, by Theorem 4.7, if J·K♯
𝐴
is computable then BCA(𝐴, 𝑎) is not recursive,

there exists no computable sound proof system which is able to prove all the valid bca triples, due to
the equivalence ∃𝑏. |= [𝑎]𝐴 r [𝑏]𝐴 ⇔ r ∈ BCA(𝐴, 𝑎).
Definition 7.1 (Program Logic ⊢bca). Given an abstract domain 𝐴𝛼,𝛾 ∈ Abs(𝐶) , the bca program
logic ⊢bca, also denoted by ⊢bca𝐴

to highlight the abstraction 𝐴, for deriving triples [𝑎]𝐴 r [𝑏]𝐴 for

regular programs r ∈ Regfix is defined in Figure 3. □

7.1 Discussion
The inductive rule for propagating best correct approximations through sequential compositions is

a crucial principle of our proof system (more in general, of any inductive proof system for proving

bcas).

Lemma 7.2 (Justification of the Rule (seq)). Assume that |= [𝑎]𝐴 r1 [𝑐]𝐴 and |= [𝑐]𝐴 r2 [𝑏]𝐴. Then,
|= [𝑎]𝐴 r1; r2 [𝑏]𝐴 iff 𝑏 = 𝛼Jr2KJr1K𝛾 (𝑎).

Proof. We have that:

|= [𝑎]𝐴 r1; r2 [𝑏]𝐴 ⇔ [by Definition 6.1]

Jr2K
♯

𝐴
Jr1K

♯

𝐴
𝑎 = 𝑏 & 𝑏 = 𝛼Jr2KJr1K𝛾 (𝑎) ⇔ [by hypothesis, |= [𝑎]𝐴 r1 [𝑐]𝐴]

Jr2K
♯

𝐴
𝑐 = 𝑏 & 𝑏 = 𝛼Jr2KJr1K𝛾 (𝑎) ⇔ [by hypothesis, |= [𝑐]𝐴 r2 [𝑏]𝐴]

𝑏 = 𝛼Jr2KJr1K𝛾 (𝑎) . □

In the rule (seq), from the inductive validity of two triples [𝑎]𝐴 r1 [𝑐]𝐴 and [𝑐]𝐴 r2 [𝑏]𝐴, we want to
derive that the triple [𝑎]𝐴 r1; r2 [𝑏]𝐴 is valid. Lemma 7.2 states that the hypothesis 𝑏 = 𝛼Jr2KJr1K𝛾 (𝑎)
of the rule (seq) cannot be avoided in any inductive logic that aims at inferring that sequential

compositions preserve bcas. It is worth remarking that 𝑏 = 𝛼Jr2KJr1K𝛾 (𝑎) is equivalent to
Jr2K

♯

𝐴
𝛼
(
Jr1K𝛾 (𝑎)

)
= 𝛼Jr2K

(
Jr1K𝛾 (𝑎)

)
(7)

as 𝑏 = Jr2K
♯

𝐴
𝑐 = Jr2K

♯

𝐴
𝛼Jr1K𝛾 (𝑎). Then, it turns out that

𝛼Jr1; r2K𝛾 (𝑎) = 𝑏 ⇔ [by definition (1)]

𝛼Jr2KJr1K𝛾 (𝑎) = 𝑏 ⇔ [as |= [𝑐]𝐴 r2 [𝑏]𝐴]
𝛼Jr2KJr1K𝛾 (𝑎) = 𝛼Jr2K𝛾 (𝑐) ⇔ [as |= [𝑎]𝐴 r1 [𝑐]𝐴]

𝛼Jr2KJr1K𝛾 (𝑎) = 𝛼Jr2K𝛾 (𝛼Jr1K𝛾 (𝑎)) ⇔ [as 𝛼Jr2K𝛾 (𝛼Jr1K𝛾 (𝑎)) = Jr2K
♯

𝐴
(𝛼Jr1K𝛾 (𝑎))]

(7) holds.

This condition (7) highlights that in the rule (seq) we are indeed requiring that r2 is locally 𝛼-

complete on Jr1K𝛾 (𝑎).
Let us draw some further remarks on the program logic ⊢bca.

(a) We can also consider the following rule for sequential composition:

⊢bca [𝑎]𝐴 r1 [𝑐]𝐴 ⊢bca [𝑐]𝐴 r2 [𝑏]𝐴 𝛾 (𝑐) = Jr1K𝛾 (𝑎)
⊢bca [𝑎]𝐴 r1; r2 [𝑏]𝐴

(seq𝛾 )

having as premise the local 𝛾-completeness of r1 on 𝑎, that is, 𝛾 (𝑐) = 𝛾Jr1K
♯

𝐴
𝑎 = Jr1K𝛾 (𝑎). This

rule is sound because if 𝛾 (𝑐) = Jr1K𝛾 (𝑎) holds then the premise of (seq) is satisfied:
𝛾 (𝑐) = Jr1K𝛾 (𝑎) ⇒ [by applying 𝛼Jr2K to both sides]

𝛼Jr2K𝛾 (𝑐) = 𝛼Jr2KJr1K𝛾 (𝑎) ⇔ [as 𝑏 = 𝛼Jr2K𝛾 (𝑐)]
𝑏 = 𝛼Jr2KJr1K𝛾 (𝑎) .
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Hence, it turns out that (seq𝛾 ) is a weaker rule than (seq), and we will freely use (seq𝛾 ) in our

examples. We will show in Example 8.1 that (seq𝛾 ) is strictly weaker than (seq).
(b) While the logic ⊢bca includes a rule for weakening the abstract precondition 𝑎 of a triple

[𝑎]𝐴 r [𝑏]𝐴, as expected no rule for altering (weakening or strengthening) the abstract post-

condition can be available, since the validity of [𝑎]𝐴 r [𝑏]𝐴 entails an equality to 𝑏, so that the

abstract postcondition 𝑏 cannot be altered.

(c) Let us point out that when 𝐴 coincides with the concrete domain, i.e. 𝐴 = idAbs, we do not

obtain Hoare logic as an instance of the bca logic. In fact, by considering 𝐴 = idAbs =𝐶 = ℘(D),
a bca triple [𝑋 ] id

Abs

r [𝑌 ] id
Abs

, with 𝑋,𝑌 ∈ ℘(D), is valid when JrK𝑋 = 𝑌 holds, while validity of

a Hoare logic triple {𝑋 } r {𝑌 } means that JrK𝑋 ⊆ 𝑌 holds.

Remark 7.3 (Infinitary Rule for fix is Unsound). As an alternative to the recursive rule (rec),
one could guess the following infinitary rule:

∀𝑛 ∈ N. ⊢bca [𝑎𝑛]𝐴 r [𝑎𝑛+1]𝐴
⊢bca [𝑎0]𝐴 rfix [∨𝑛∈N𝑎𝑛]𝐴

(iteratefix )

A similar rule has been used both in incorrectness logic [O’Hearn 2020] and in local completeness

logic [Bruni et al. 2021, 2023] for the Kleene star, namely with rfix
replaced by r★. We recall that

incorrectness logic deals with concrete semantics, while local completeness logic, which is paramet-

ric on an abstraction 𝐴, considers the Kleene star r★ but does not include the fixpoint command rfix
,

and we showed in Remark 2.2 and Theorem 2.4 that the abstract semantics of r★ and rfix
may differ.

It turns out that this infinitary rule (iteratefix ) is unsound. This unsoundness can be shown by

resorting to the program rfix
with r ≜ (𝑥 = 2;𝑥 := 𝑥 + 3) ⊕ 𝑥 := 𝑥 − 3 already used in Remark 2.2. In

fact, we can prove that for all intervals [𝑘, 𝑘 + 1] ∈ Int, for 𝑘 ∈ Z, such that 2 ∉ [𝑘, 𝑘 + 1], we can
derive ⊢bca [[𝑘, 𝑘 + 1]] Int r [[𝑘 − 3, 𝑘 − 2]] Int as follows:

hypothesis 2 ∉ [𝑘, 𝑘 + 1]
⊢bca [[𝑘, 𝑘 + 1]] Int 𝑥 = 2 [⊥Int] Int

(basic) ⊢bca [⊥Int] Int 𝑥 := 𝑥 + 3 [⊥Int] Int

(basic)

⊢bca [[𝑘, 𝑘 + 1]] Int 𝑥 = 2;𝑥 := 𝑥 + 3 [⊥Int] Int

(seq𝛾 ) ⊢bca [[𝑘, 𝑘 + 1]] Int 𝑥 := 𝑥 − 3 [[𝑘 − 3, 𝑘 − 2]] Int

⊢bca [[𝑘, 𝑘 + 1]] Int r [[𝑘 − 3, 𝑘 − 2]] Int

(choice)

Hence, with abstract input 𝑎0 = [3, 4] ∈ Int, we can infer the following denumerable sequence:

⊢bca [[3, 4]] Int r [[0, 1]] Int ⊢bca [[0, 1]] Int r [[−3,−2]] Int ⊢bca [[−3,−2]] Int r [[−6,−5]] Int · · ·

By applying (iteratefix ), since [−∞, 4] = ∨Int{[3, 4], [0, 1], [−3,−2], [−6,−5], ...}, we would obtain

that the triple [[3, 4]] Int rfix [[−∞, 4]] Int is valid, while, as noticed in Remark 2.2, it turns out that

JrfixK♯Int [3, 4] = [−∞, 5].
In summary, we have shown that the logical reasoning underpinning the abstract bca semantics of

loops defined as rfix
is fundamentally different to the principles for handling loops expressed as r★

in incorrectness and local completeness logics (see also the discussion in Section 7.3). □

7.2 Soundness and Incompleteness
It turns out that the program logic ⊢bca is sound.

Theorem 7.4 (Soundness of ⊢bca). For all r ∈ Regfix, 𝐴 ∈ Abs(𝐶), 𝑎, 𝑏 ∈ 𝐴, if ⊢bca [𝑎]𝐴 r [𝑏]𝐴 then
|= [𝑎]𝐴 r [𝑏]𝐴.

Proof. The proof proceeds by structural induction on r ∈ Regfix and by induction on the

derivation tree of ⊢bca [𝑎]𝐴 r [𝑏]𝐴.
(basic). Clear, as JcK♯

𝐴
𝑎 = 𝛼JcK𝛾 (𝑎) by definition (2).
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(choice).

Jr1 ⊕ r2K
♯

𝐴
𝑎 = [by definition (2)]

Jr1K
♯

𝐴
𝑎 ∨𝐴 Jr2K

♯

𝐴
𝑎 = 𝑏1 ∨𝐴 𝑏2 = [by tree induction]

𝛼Jr1K𝛾 (𝑎) ∨𝐴 𝛼Jr2K𝛾 (𝑎) = [by additivity of 𝛼]

𝛼 (Jr1K𝛾 (𝑎) ∨𝐶 Jr2K𝛾 (𝑎)) = 𝛼Jr1 ⊕ r2K𝛾 (𝑎) . [by definition (1)]

(seq).

Jr1; r2K
♯

𝐴
𝑎 = [by definition (2)]

Jr2K
♯

𝐴
Jr1K

♯

𝐴
𝑎 = Jr2K

♯

𝐴
𝑐 = 𝑏 = [by tree induction]

𝛼Jr2K𝛾 (𝑐) = [by tree induction]

𝛼Jr2K𝛾 (𝛼Jr1K𝛾 (𝑎)) = [by premise’s rule]

𝛼Jr2KJr1K𝛾 (𝑎) = 𝛼Jr1; r2K𝛾 (𝑎) . [by definition (1)]

(abs-inv). (i) We have that 𝑎 ∨𝐴 JrK♯
𝐴
𝑎 = 𝑎 ∨𝐴 𝑏 = 𝑎, i.e., 𝑎 is a fixpoint of 𝜆𝑥 ∈ 𝐴. 𝑎 ∨𝐴 JrK♯

𝐴
𝑥 . Then,

if 𝑧 ∈ 𝐴 is a fixpoint, i.e., 𝑎 ∨𝐴 JrK♯
𝐴
𝑧 = 𝑧, then 𝑎 ≤𝐴 𝑧, so that 𝑎 = lfp(𝜆𝑥 ∈ 𝐴. 𝑎 ∨𝐴 JrK♯

𝐴
𝑥) = JrfixK♯

𝐴
𝑎

holds. (ii) By tree induction, we have that 𝛼JrK𝛾 (𝑎) = 𝑏 ≤𝐴 𝑎, so that, by Galois connection,

JrK𝛾 (𝑎) ≤𝐶 𝛾 (𝑎), and, in turn, 𝛾 (𝑎) ∨𝐶 JrK𝛾 (𝑎) = 𝛾 (𝑎), i.e., 𝛾 (𝑎) is a fixpoint of 𝜆𝑥 ∈ 𝐶.𝛾 (𝑎) ∨𝐶 JrK𝑥 .
Then, if 𝑧 ∈ 𝐶 is a fixpoint, i.e., 𝑧 = 𝛾 (𝑎) ∨𝐶 JrK𝑧, then 𝛾 (𝑎) ≤ 𝑧, so that 𝛾 (𝑎) = lfp(𝜆𝑥 ∈
𝐶.𝛾 (𝑎) ∨𝐶 JrK𝑥). As a consequence, 𝑎 = 𝛼𝛾 (𝑎) = 𝛼 (lfp(𝜆𝑥 ∈ 𝐶.𝛾 (𝑎) ∨𝐶 JrK𝑥)) = 𝛼JrfixK𝛾 (𝑎).

(rec). (i) First, we have that lfp(𝜆𝑥 ∈ 𝐴. 𝑎 ∨𝐴 JrK♯
𝐴
𝑥) ≤𝐴 lfp(𝜆𝑥 ∈ 𝐴. 𝑎 ∨𝐴 𝑏 ∨𝐴 JrK♯

𝐴
𝑥) = 𝑎 ∨𝐴 𝑏. On

the other hand, for all 𝑧 ∈ 𝐴, if 𝑎∨𝐴 JrK♯
𝐴
𝑧 = 𝑧, i.e. 𝑧 is a fixpoint, then 𝑎 ≤𝐴 𝑧 and JrK♯

𝐴
𝑧 ≤𝐴 𝑧, so that

Jr𝑛K♯
𝐴
𝑧 = (JrK♯

𝐴
)𝑛𝑧 ≤𝐴 𝑧 holds, and, in turn, 𝑏 = Jr𝑛K♯

𝐴
𝑎 ≤𝐴 Jr𝑛K♯

𝐴
𝑧 ≤𝐴 𝑧. Hence, 𝑎 ∨𝐴 𝑏 ≤𝐴 𝑧 holds.

As a consequence, JrfixK♯
𝐴
𝑎 = lfp(𝜆𝑥 ∈ 𝐴. 𝑎∨𝐴 JrK♯

𝐴
𝑥) = 𝑎∨𝐴 𝑏. (ii) We have that lfp(𝜆𝑥 ∈ 𝐶.𝛾 (𝑎) ∨𝐶

JrK𝑥) ≤𝐶 lfp(𝜆𝑥 ∈ 𝐶.𝛾 (𝑎 ∨𝐴 𝑏) ∨𝐶 JrK𝑥), hence 𝛼 (lfp(𝜆𝑥 ∈ 𝐶.𝛾 (𝑎) ∨𝐶 JrK𝑥)) ≤𝐴 𝛼 (lfp(𝜆𝑥 ∈
𝐶.𝛾 (𝑎 ∨𝐴 𝑏) ∨𝐶 JrK𝑥)) = 𝑎 ∨𝐴 𝑏. For the converse inequality, let𝐶 ∋ 𝑔 ≜ lfp(𝜆𝑥 ∈ 𝐶.𝛾 (𝑎) ∨𝐶 JrK𝑥)),
so that 𝑔 = 𝛾 (𝑎) ∨𝐶 JrK𝑔, and, in turn, 𝛾 (𝑎) ≤ 𝑔 and JrK𝑔 ≤ 𝑔. Thus, we obtain that for all 𝑘 ∈ N,
JrK𝑘𝛾 (𝑎) ≤ 𝑔. Hence, from 𝛾 (𝑎) ≤ 𝑔, by GC, we obtain 𝑎 = 𝛼𝛾 (𝑎) ≤ 𝛼 (𝑔), and from JrK𝑛𝛾 (𝑎) ≤ 𝑔 we

derive, by GC and by |= [𝑎]𝐴 r𝑛 [𝑏]𝐴, that 𝑏 = 𝛼Jr𝑛K𝛾 (𝑎) = 𝛼JrK𝑛𝛾 (𝑎) ≤𝐴 𝛼 (𝑔). As a consequence,
𝑎 ∨𝐴 𝑏 ≤𝐴 𝛼 (𝑔) = 𝛼 (lfp(𝜆𝑥 ∈ 𝐶.𝛾 (𝑎) ∨𝐶 JrK𝑥)) = 𝛼JrfixK𝛾 (𝑎).

(weakenpre).

JrK♯
𝐴
𝑎 ≥𝐴 [by 𝑎′ ≤𝐴 𝑎 and monotonicity]

JrK♯
𝐴
𝑎′ = [by tree induction]

𝑏 ≥ [by JrK♯
𝐴
𝑎 ≤𝐴 𝑏]

JrK♯
𝐴
𝑎 ≥𝐴 [by soundness of JrK♯

𝐴
]

𝛼JrK𝛾 (𝑎) ≥𝐴 [by 𝑎′ ≤𝐴 𝑎 and monotonicity]

𝛼JrK𝛾 (𝑎′) = [by tree induction]

𝑏 ≥𝐴 JrK♯
𝐴
𝑎 [by JrK♯

𝐴
𝑎 ≤𝐴 𝑏]

thus showing that JrK♯
𝐴
𝑎 = 𝑏 = 𝛼JrK𝛾 (𝑎). □

On the other hand, the proof system ⊢bca is logically incomplete, i.e., the converse of the soundness

Theorem 7.4 does not hold.
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⊢bca [𝑎]𝐴 r [𝑏]𝐴 𝑏 ≤𝐴 𝑎

⊢bca [𝑎]𝐴 r★ [𝑎]𝐴
(abs-inv★)

∃𝑛 ≥ 1. ⊢bca [𝑎]𝐴 r𝑛 [𝑏]𝐴 ⊢bca [𝑎 ∨𝐴 𝑏]𝐴 r★ [𝑎 ∨𝐴 𝑏]𝐴
⊢bca [𝑎]𝐴 r★ [𝑎 ∨𝐴 𝑏]𝐴

(rec★)

Fig. 4. The bca Rules for Kleene Star.

Theorem 7.5 (Incompleteness of ⊢bca). There exist r ∈ Regfix, 𝐴 ∈ Abs(𝐶) and 𝑎, 𝑏 ∈ 𝐴 such that
|= [𝑎]𝐴 r [𝑏]𝐴 but ⊬bca [𝑎]𝐴 r [𝑏]𝐴.

Proof. Let r1 ≜ 𝑥 := 𝑥 + 1;𝑥 := 𝑥 − 1, r2 ≜ 𝑥 := 𝑥 + 1, and consider the sign abstraction Sign.
We have that [Z>0]Sign r1; r2 [Z>0]Sign is a valid bca triple, as

Jr1; r2K
♯

SignZ>0 = J𝑥 := 𝑥 + 1K♯SignJ𝑥 := 𝑥 − 1K♯SignJ𝑥 := 𝑥 + 1K♯SignZ>0

= J𝑥 := 𝑥 + 1K♯SignJ𝑥 := 𝑥 − 1K♯SignZ>0 = J𝑥 := 𝑥 + 1K♯SignZ≥0

= Z>0 = 𝛼Sign (Z>1) = 𝛼SignJr1; r2K𝛾Sign (Z>0) .

However, this triple [Z>0]Sign r1; r2 [Z>0]Sign cannot be inferred in ⊢bca. This is because an attempt to

derive [Z>0]Sign r1; r2 [Z>0]Sign would need to derive the triples [Z>0]Sign r1 [𝑐]Sign and [𝑐]Sign r2 [Z>0]Sign,

for some 𝑐 ∈ Sign, and then to apply (seq), if its noninductive premise holds. Moreover, the triple

[Z>0]Sign r1 [𝑐]Sign should be valid, thus entailing that 𝑐 = 𝛼SignJr1K𝛾Sign (Z>0) = 𝛼Sign (Z>0) = Z>0.

However, the triple [Z>0]Sign r1 [Z>0]Sign cannot be valid as

JrK♯SignZ>0 = J𝑥 := 𝑥 − 1K♯SignJ𝑥 := 𝑥 + 1K♯SignZ>0 = J𝑥 := 𝑥 − 1K♯SignZ>0 = Z≥0 .

Hence, [Z>0]Sign r1 [Z>0]Sign cannot be inferred, thus proving that ⊬bca [𝑎]𝐴 r [𝑏]𝐴. Let us also remark

that the rule (weakenpre) cannot help, because we cannot modify the input precondition Z>0.

On the other hand, it is worth observing that if we change the input precondition to Z≥0 then we

could easily derive the valid triple [Z≥0]Sign r [Z≥0]Sign. □

7.3 Rules for Kleene Star
The two bca rules for rfix

can be also used for the bca reasoning on r★: the corresponding rules are

given in Figure 4 and turn out to be sound.

Theorem 7.6 (Soundness of Kleene Star Rules). The program logic ⊢bca augmented with the rules
in Figure 4 is sound. Thus, for all r ∈ Reg, 𝐴 ∈ Abs(𝐶), 𝑎, 𝑏 ∈ 𝐴, if ⊢bca [𝑎]𝐴 r [𝑏]𝐴 then |= [𝑎]𝐴 r [𝑏]𝐴.

Proof. (abs-inv★). We have that JrK♯
𝐴

0𝑎 = 𝑎, and, by an easy induction, for all 𝑘 ≥ 1, JrK♯
𝐴
𝑘𝑎 ≤𝐴 𝑎.

Thus, Jr★K♯
𝐴
𝑎 =

∨
𝐴{JrK♯

𝐴
𝑘𝑎 | 𝑘 ∈ N} = 𝑎 holds.Moreover, we show that for all𝑘 ≥ 1,𝛼JrK𝑘𝛾 (𝑎) ≤𝐴 𝑎.

In fact, 𝛼JrK1𝛾 (𝑎) = 𝛼JrK𝛾 (𝑎) = 𝑏 ≤𝐴 𝑎 as |= [𝑎]𝐴 r [𝑏]𝐴. Then,

𝛼JrK𝑘+1𝛾 (𝑎) = 𝛼JrKJrK𝑘𝛾 (𝑎) ≤𝐴 [as id ¤≤ 𝛾𝛼]

𝛼JrK𝛾𝛼JrK𝑘𝛾 (𝑎) ≤𝐴 [by induction]

𝛼JrK𝛾 (𝑏) ≤𝐴 [as 𝑏 ≤𝐴 𝑎]

𝛼JrK𝛾 (𝑎) = [as |= [𝑎]𝐴 r [𝑏]𝐴]
𝑏 ≤𝐴 𝑎 [as 𝑏 ≤𝐴 𝑎]
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Hence,

𝛼 (Jr★K𝛾 (𝑎)) = [by definition (1)]

𝛼 (∨{JrK𝑘𝛾 (𝑎) | 𝑘 ∈ N}) = [by additivity of 𝛼]

𝛼𝛾 (𝑎) ∨∨{𝛼JrK𝑘𝛾 (𝑎) | 𝑘 ≥ 1} = [by 𝛼𝛾 = id]

𝑎 ∨∨{𝛼JrK𝑘𝛾 (𝑎) | 𝑘 ≥ 1} = 𝑎 [by the observation above]

(rec★). First, we have that Jr★K♯
𝐴
𝑎 =

∨
𝐴{JrK♯

𝐴
𝑘𝑎 | 𝑘 ∈ N} ≤𝐴

∨
𝐴{JrK♯

𝐴
𝑘𝑎 ∨𝐴 𝑏 | 𝑘 ∈ N} = 𝑎 ∨𝐴 𝑏.

Conversely, since JrK♯
𝐴

0𝑎 = 𝑎 and JrK♯
𝐴
𝑛𝑎 = Jr𝑛K♯

𝐴
𝑎 = 𝑏, we have that

∨
𝐴{JrK♯

𝐴
𝑘𝑎 | 𝑘 ∈ N} ≥ 𝑎 ∨𝐴 𝑏,

so that Jr★K♯
𝐴
𝑎 = 𝑎 ∨𝐴 𝑏 follows.

Furthermore, we also have that 𝛼JrK0𝛾 (𝑎) = 𝛼𝛾 (𝑎) = 𝑎, and, 𝛼JrK𝑛𝛾 (𝑎) = 𝛼Jr𝑛K𝛾 (𝑎) = 𝑏, so that

𝛼 (∨{JrK𝑘𝛾 (𝑎) | 𝑘 ∈ N}) =∨
𝐴{𝛼JrK𝑘𝛾 (𝑎) | 𝑘 ∈ N} ≥ 𝑎 ∨𝐴 𝑏 holds. Also,

𝛼 (Jr★K𝛾 (𝑎)) ≤𝐴 [as 𝑎 ≤𝐴 𝑎 ∨𝐴 𝑏]

𝛼 (Jr★K𝛾 (𝑎 ∨𝐴 𝑏)) = 𝑎 ∨𝐴 𝑏 [as |= [𝑎 ∨𝐴 𝑏]𝐴 r★ [𝑎 ∨𝐴 𝑏]𝐴]

Hence, 𝛼 (Jr★K𝛾 (𝑎)) = 𝛼 (∨𝐶 {JrK𝑘𝛾 (𝑎) | 𝑘 ∈ N}) = 𝑎 ∨𝐴 𝑏. □

Analogously to the discussion in Remark 7.3, it turns out that the following infinitary rule

(iterate★), which could be guessed as an alternative to the rule (rec★), is unsound:
∀𝑛 ∈ N. ⊢bca [𝑎𝑛]𝐴 r [𝑎𝑛+1]𝐴
⊢bca [𝑎0]𝐴 r★ [∨𝑛∈N𝑎𝑛]𝐴

(iterate★)

Exactly this same rule has been used both in incorrectness logic [O’Hearn 2020] for proving its

logical completeness and has been proved to be sound also in local completeness logic [Bruni et al.

2021, 2023]. We prove here the unsoundness of (iterate★) through the following program:

r ≜ 𝑥 > 0; (𝑥 := 𝑥 − 3 ⊕ 𝑥 := 𝑥 − 1)
on the interval abstraction Int. In fact, by defining 𝑎0 ≜ [3, 3] ∈ Int, we have that:

⊢bca [[3, 3]] Int r [[0, 2]] Int ⊢bca [[0, 2]] Int r [[−2, 1]] Int ⊢bca [[−2, 1]] Int r [[−2, 0]] Int

⊢bca [[−2, 0]] Int r [⊥Int] Int ⊢bca [⊥Int] Int r [⊥Int] Int

These bca triples can all be derived by leveraging (seq𝛾 ), because the test 𝑥 > 0 is globally 𝛾-

complete, i.e., for any interval 𝐼 ∈ Int, J𝑥 > 0K𝛾 (𝐼 ) = 𝛾 ( [1,+∞) ∧Int 𝐼 ) ∈ 𝛾 (Int). Hence, by applying

the rule (iterate★), we would derive the triple [[3, 3]] Int r★ [[−2, 3]] Int, which is not valid. In fact,

𝛼IntJr★K𝛾Int ( [3, 3]) = 𝛼Int (∪{{3}, {0, 2}, {−1, 1},∅}) = 𝛼Int ({−1, 0, 1, 2, 3}) = [−1, 3], meaning that

[−1, 3] is the best possible postcondition, and this is not the interval postcondition [−2, 3].

8 Illustrative Examples using the Logic ⊢bca

We provide some simple examples to illustrate how to use the logic ⊢bca to prove bca triples.

Example 8.1 (Sequential Composition). Consider the program p1 ≜ 𝑥 := 𝑥 + 2; 𝑥 := 𝑥 − 1 and

the Sign abstract domain. The analysis of p1 with abstract input Z≤0 is as follows:

Jp1K
♯

SignZ≤0 = J𝑥 := 𝑥 − 1K♯SignJ𝑥 := 𝑥 + 2K♯SignZ≤0 = J𝑥 := 𝑥 − 1K♯SignZ = Z .

This Sign analysis is the bca, as 𝛼SignJp1K𝛾Sign (Z≤0) = 𝛼Sign (Z≤1) = Z. We can easily derive the

triple ⊢bca [Z≤0]Sign p1 [Z]Sign as follows:

⊢bca [Z≤0]Sign 𝑥 := 𝑥 + 2 [Z]Sign

(basic) ⊢bca [Z]Sign 𝑥 := 𝑥 − 1 [Z]Sign

(basic)
Z = 𝛼SignJ𝑥 := 𝑥 − 1KJ𝑥 := 𝑥 + 2K𝛾Sign (Z≤0)

⊢bca [Z≤0]Sign p1 [Z]Sign

(seq)
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Notice that we applied the (seq) rule by leveraging the local 𝛼-completeness of 𝑥 := 𝑥 − 1 on

J𝑥 := 𝑥 + 2K𝛾Sign (Z≤0) = Z≤2. Here, (seq𝛾 ) cannot be applied as 𝑥 := 𝑥 + 2 is not locally 𝛾-complete

on Z≤0: in fact, 𝛾SignJ𝑥 := 𝑥 + 2K♯SignZ≤0 = Z ≠ Z≤2 = J𝑥 := 𝑥 + 2K𝛾Sign (Z≤0).
Then, consider the input property Z≥0 ∈ Sign, so that the analysis is as follows:

Jp1K
♯

SignZ≥0 = J𝑥 := 𝑥 − 1K♯SignJ𝑥 := 𝑥 + 2K♯SignZ≥0 = J𝑥 := 𝑥 − 1K♯SignZ>0 = Z≥0 .

In this case, this analysis is not the bca, as 𝛼SignJp1K𝛾Sign (Z≥0) = 𝛼Sign (Z>0) = Z>0, so that both

triples [Z≥0]Sign p1 [Z≥0]Sign and [Z≥0]Sign p1 [Z>0]Sign are not valid.

Consider now the program p2 ≜ 𝑥 := 𝑥 + 1; 𝑥 := 𝑥 − 2, whose Sign analysis with input Z≥0 is:

Jp2K
♯

SignZ≥0 = J𝑥 := 𝑥 − 2K♯SignJ𝑥 := 𝑥 + 1K♯SignZ≥0 = J𝑥 := 𝑥 − 2K♯SignZ>0 = Z ,

and this is the bca as 𝛼SignJp2K𝛾Sign (Z≥0) = 𝛼Sign (Z≥−1) = Z. Here, the (seq𝛾 ) rule can be applied as

the command 𝑥 := 𝑥 + 1 is locally 𝛾-complete on Z≥0 as 𝛾Sign (Z>0) = Z>0 = J𝑥 := 𝑥 + 1K𝛾Sign (Z≥0).
Thus, we can prove the bca triple [Z≥0]Sign p2 [Z]Sign as follows:

⊢bca [Z≥0]Sign 𝑥 := 𝑥 + 1 [Z>0]Sign

(basic) ⊢bca [Z>0]Sign 𝑥 := 𝑥 − 2 [Z]Sign

(basic)
𝛾Sign (Z>0) = J𝑥 := 𝑥 + 1K𝛾Sign (Z≥0)

⊢bca [Z≥0]Sign p2 [Z]Sign

(seq𝛾 )

□

Example 8.2 (Loop). Consider the analysis on Sign of the following program

p3 ≜ (𝑥 > 0?; 𝑥 := 𝑥 − 1)fix
;𝑥 ≤ 0?

corresponding to the while program while 𝑥 > 0 do 𝑥 := 𝑥 − 1.

Let 𝐵 ≜ (𝑥 > 0?; 𝑥 := 𝑥 − 1)fix
. The Sign analysis of p3 with input Z>0 ∈ Sign is:

Jp3K
♯

SignZ>0 = J𝑥 ≤ 0?K♯Sign (lfp(𝜆𝑥 ∈ Sign. Z>0 ∨Sign J𝐵K♯Sign𝑥)) = J𝑥 ≤ 0?K♯SignZ≥0 = Z=0 .

The bca triple [Z>0]Sign p3 [Z=0]Sign is valid as Z=0 is the bca, i.e., 𝛼SignJp3K𝛾Sign (Z>0) = 𝛼Sign (Z=0) =
Z=0. We can prove this triple in ⊢bca as follows:

⊢bca [Z>0]Sign 𝑥 > 0? [Z>0]Sign

(basic) ⊢bca [Z>0]Sign 𝑥 := 𝑥 − 1 [Z≥0]Sign

(basic)
𝛾Sign (Z>0) = J𝑥 > 0?K𝛾Sign (Z>0)

⊢bca [Z>0]Sign 𝐵 [Z≥0]Sign

(seq𝛾 ) Z>0 ≤Sign Z≥0 J𝐵K♯SignZ≥0 ≤ Z≥0

⊢bca [Z≥0]Sign 𝐵 [Z≥0]Sign

(weakenpre)

(‡)

(‡)
⊢bca [Z≥0]Sign 𝐵

fix [Z≥0]Sign

(abs-inv) ⊢bca [Z≥0]Sign 𝑥 ≤ 0? [Z=0]Sign

(basic)
𝛾Sign (Z≥0) = J𝐵fixK𝛾Sign (Z≥0)

⊢bca [Z≥0]Sign p3 [Z=0]Sign

(seq𝛾 ) □

Example 8.3 (Loop). Finally, let us consider an interval analysis for the program

p4 ≜ (𝑥 < 0?; 𝑥 := 𝑥 + 2)fix
;𝑥 ≥ 0?

corresponding to the while program while 𝑥 < 0 do 𝑥 := 𝑥 + 2.

Let 𝐵 ≜ (𝑥 < 0?; 𝑥 := 𝑥 + 2)fix
. The interval analysis of p4 with input [−4,−4] ∈ Int is:

Jp4K
♯

Int [−4,−4] = J𝑥 ≥ 0?K♯Int (lfp(𝜆𝑥 ∈ Int. [−4,−4] ∨Int J𝐵K♯Int𝑥)) = J𝑥 ≥ 0?K♯Int [−4, 1] = [0, 1] .
This Int analysis is not the bca as 𝛼IntJp4K𝛾Int ( [−4,−4]) = 𝛼Sign ({0}) = [0, 0]. Hence, both bca

triples [[−4,−4]] Int p4 [[0, 1]] Int and [[−4,−4]] Int p4 [[0, 0]] Int are not valid.

Consider now the input property [−4,−3] ∈ Int, whose corresponding Int analysis is:

Jp4K
♯

Int [−4,−3] = J𝑥 ≥ 0?K♯Int (lfp(𝜆𝑥 ∈ Int. [−4,−3] ∨Int J𝐵K♯Int𝑥)) = J𝑥 ≥ 0?K♯Int [−4, 1] = [0, 1] .
In this case, this is the best possible analysis, because 𝛼IntJp4K𝛾Int ( [−4,−3]) = 𝛼Sign ({0, 1}) = [0, 1].
We can derive the bca triple [[−4,−3]]Sign p4 [[0, 1]]Sign as follows:
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⊢bca [[−4,−3]] Int 𝑥 < 0? [[−4,−3]] Int

(basic) ⊢bca [[−4,−3]] Int 𝑥 := 𝑥 + 2 [[−2,−1]] Int

(basic)
𝛾Int ( [−4,−3]) = J𝑥 < 0?K𝛾Sign ( [−4,−3])

⊢bca [[−4,−3]] Int 𝐵 [[−2,−1]] Int

(seq𝛾 )

(a)

⊢bca [[−2,−1]] Int 𝑥 < 0? [[−2,−1]] Int

(basic) ⊢bca [[−2,−1]] Int 𝑥 := 𝑥 + 2 [[0, 1]] Int

(basic)
𝛾Int ( [−2,−1]) = J𝑥 < 0?K𝛾Sign ( [−2,−1])

⊢bca [[−2,−1]] Int 𝐵 [[0, 1]] Int

(seq𝛾 )

(b)

⊢bca [[−4,−1]] Int 𝑥 < 0? [[−4, 1]] Int

(basic) ⊢bca [[−4,−1]] Int 𝑥 := 𝑥 + 2 [[−2, 1]] Int

(basic)
𝛾Int ( [−4, 1]) = J𝑥 < 0?K𝛾Sign ( [−4,−1])

⊢bca [[−4, 1]] Int 𝐵 [[−2, 1]] Int

(seq𝛾 ) [−2, 1] ≤Int [−4, 1]
⊢bca [[−4, 1]] Int 𝐵

fix [[−4, 1]] Int

(abs-inv)

(c)

(a)

⊢bca [[−4,−3]] Int 𝐵 [[−2,−1]] Int

(seq𝛾 )
(b)

⊢bca [[−2,−1]] Int 𝐵 [[0, 1]] Int

(seq𝛾 )
𝛾Int ( [−2,−1]) = J𝐵K𝛾Sign ( [−4,−3])

⊢bca [[−4,−3]] Int 𝐵
2 [[0, 1]] Int

(seq𝛾 )

(d)

(d)

⊢bca [[−4,−3]] Int 𝐵
2 [[0, 1]] Int

(seq𝛾 )
(c)

⊢bca [[−4, 1]] Int 𝐵
fix [[−4, 1]] Int

(abs-inv) [−4, 1] = [−4,−3] ∨Int [0, 1]
⊢bca [[−4,−3]] Int 𝐵

fix [[−4, 1]] Int

(rec)

(e)

(e)

⊢bca [[−4,−3]] Int 𝐵
fix [[−4, 1]] Int

(rec) ⊢bca [[−4, 1]] Int 𝑥 ≥ 0 [[0, 1]] Int 𝛾Int ( [−4,−1]) = J𝐵fixK𝛾Sign ( [−4,−3])
⊢bca [[−4,−3]] Int p4 [[0, 1]] Int

(seq𝛾 )

Here, the derivation of the triple [[−4,−3]] Int p4 [[0, 1]] Int reconstructs the least fixpoint computation

of 𝜆𝑥 ∈ Int. [−4,−3] ∨Int J𝐵K♯
𝐴
𝑥 , yet proving that [−4, 1] is the best possible analysis in Int. □

9 Related Work
While the notion of best correct approximation is well established [Cousot 2021, Sections 27.5-27.6],

and abstract transfer functions are often designed with a proof of optimality (see, e.g., [Miné 2017]

for numerical abstractions such as affine equalities [Karr 1976] and octagons [Miné 2006]), the

property of being the best abstract interpretation has not been thoroughly explored.

The most related works are [Reps et al. 2004] and [Thakur and Reps 2012]. Reps et al. [2004]

put forward an algorithm to attain, under some hypotheses, a symbolic abstract transfer function

which is the bca on a given abstraction, in particular for the predicate abstraction domain of

logical formulae [Jhala et al. 2018]. [Reps et al. 2004] shows how to implement symbolically the

abstraction function 𝛼 through operations on logical formulae and, in particular, relies on having an

algorithm for satisfiability checking of a logical formula. This first result has been later generalized

and improved in [Thakur and Reps 2012], where the approach leverages Stålmarck’s algorithm

[Sheeran and Stålmarck 2000] as satisfiability checker of formulae. A summary of these two works

is described in the survey [Reps and Thakur 2016, Section 5] on automating abstract interpretation.

A second line of work focussing on best correct approximations is [Giacobazzi and Ranzato

2010, 2014], which investigates a notion of correctness kernel. Given the concrete semantics JpK of
some program p and an abstraction 𝐴, the correctness kernel of 𝐴 for p is defined to be the most

abstract domain Kp (𝐴) that induces the same bca of JpK as 𝐴 does, i.e., the most abstract domain

𝐴m ∈ Abs(𝐶) such that 𝛼𝐴m
JpK𝛾𝐴m

= 𝛼𝐴JpK𝛾𝐴 holds. Giacobazzi and Ranzato [2010, 2014] show

that this correctness kernel Kp (𝐴) exists under mild conditions, provide a constructive method

to build Kp (𝐴), and apply this approach to the well-known CEGAR method for abstract model

checking [Clarke et al. 2000, 2003] to define a more accurate abstraction refinement heuristic, which

is a crucial component of the CEGAR method.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 46. Publication date: January 2025.



The Best of Abstract Interpretations 46:29

Finally, our logic ⊢bca can be viewed as an abstract program logic, meaning that the reasoning is

parametrized and relies on a given abstract domain 𝐴𝛼,𝛾 . This feature is shared with other program

logics, such as the algebraic Hoare logic by Cousot et al. [2012] and the local completeness logic

by Bruni et al. [2021, 2023]. The algebraic Hoare logic [Cousot et al. 2012] aims at proving triples

{𝑎}p{𝑏}, where 𝑎, 𝑏 ∈ 𝐴 are abstract assertions, whose validity is defined by JpK𝛾 (𝑎) ⊆ 𝛾 (𝑏). The
local completeness logic [Bruni et al. 2021, 2023] proves triples [𝑐]p[𝑑], where 𝑐, 𝑑 ∈ 𝐶 are concrete

assertions, whose validity means that both 𝑑 ≤𝐶 JpK𝑐 and JpK♯
𝐴
𝛼 (𝑐) = 𝛼 (𝑑) = 𝛼 (JpK𝑐) hold, thus

entailing that 𝑑 is an under-approximation of the strongest postcondition JpK𝑐 , as in incorrectness

logic [O’Hearn 2020], and, besides, the analysis of p is locally 𝛼-complete on the precondition 𝑐 .

10 Conclusion and Future Work
We studied the properties of the best correct approximations of a concrete semantics by abstract

interpretation from three complementary and interrelated perspectives. First, we studied the

computability attributes of the class of programs admitting the best possible abstract interpretation

in 𝐴, by showing its nonrecursivity; then, we have shown the impossibility of achieving the bca

property through either program compilation or minimal abstraction refinements or simplifications

of the domain 𝐴; finally, we designed a program logic parametrized on the abstraction 𝐴 to infer

Hoare-like triples [𝑎]𝐴 p [𝑏]𝐴 encoding that the abstract interpretation of a program p on 𝐴 with a

given abstract input 𝑎 ∈ 𝐴 provides an abstract output 𝑏 ∈ 𝐴 which is the best possible one in 𝐴.

One might ask whether breaking a program p into suitable subprograms could induce optimal ab-

stract transfer functions for each subprogram, possibly resulting in the best overall abstraction for p.
This question is challenging for future work but it is too general without constraints on the choice of

subprograms. For example, the program p in Example 3.3 works for proving that composition does

not preserve the bca property when it is considered as the composition (𝑧 := 2; 𝑧 := 𝑧 + 1); 𝑧 := 𝑧 − 1.

However, if p is viewed as 𝑧 := 2; (𝑧 := 𝑧 + 1; 𝑧 := 𝑧 − 1), then Example 3.3 would fail because the

bca property in Sign does not hold for the subprogram 𝑧 := 𝑧 + 1; 𝑧 := 𝑧 − 1.

We envisage a further stimulating direction of future work. We proved that the bca is the only

possible sound and extensional abstract program semantics. Equivalently, any abstract interpretation

which is not the best, turns out to be intrinsically intensional. This phenomenon is rooted into the

noncompositionality of abstract interpretation: whenever we inductively compose abstract transfer

functions we may lose the bca property. In this context, we plan to investigate a notion of abstract
Kleene algebra with tests (aKAT), based on an abstract rather than concrete semantics. The observa-

tion in Section 2.3.1 that the Kleene star r★ and fixpoint operations rfix
behave differently in the

abstract semantics suggests that the well-known axiomatization of KAT [Kozen 1997] for reasoning

on program behaviours as modeled by concrete semantics does not work for abstract semantics.

Hence, a notion of abstract KAT should have a different algebraic structure, compliant with the

specific fixpoint strategy adopted. The goal is to explore KAT-like axiomatizations of program

behaviors defined by abstract semantics, where loop invariants are modeled by rfix
instead of r★.

This would enable equational reasoning on programs through the lens of abstract interpretation,

making aKAT for abstract interpretation what KAT is for concrete interpretation.
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